Unveiling complexity: Exploring chaos and solitons in modified nonlinear Schrödinger equation

被引:5
|
作者
Wang, Pengfei [1 ]
Yin, Feng [1 ]
Rahman, Mati ur [2 ,3 ]
Khan, Meraj Ali [4 ]
Baleanu, Dumitru [3 ]
机构
[1] Xinzhou Normal Univ, Math Dept, Xinzhou 034000, Shanxi, Peoples R China
[2] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[4] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Angola
关键词
Schrodinger equation; Galilean transformation; Bifurcation;
D O I
10.1016/j.rinp.2023.107268
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study delves deep into the complexities of the modified nonlinear Schrodinger equation. Through the Galilean transformation, we derive a dynamic system linked to the equation. Using planar dynamical systems theory, we investigate bifurcation phenomena and introduce perturbations to reveal chaotic behaviors. Phase portraits offer visual insights, while sensitivity analysis using the Runge-Kutta method emphasizes solution stability against initial condition variations. Leveraging the planar dynamical system method, we generate diverse solitons, including periodic, bright, and dark solitons. This work enhances our grasp of intricate dynamics and their broader implications.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Optical solitons of the coupled nonlinear Schrödinger’s equation with spatiotemporal dispersion
    Mustafa Inc
    Esma Ates
    Fairouz Tchier
    Nonlinear Dynamics, 2016, 85 : 1319 - 1329
  • [32] Shannon entropy and fisher information of solitons for the cubic nonlinear Schrödinger equation
    Yamano, Takuya
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (07):
  • [33] On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential
    Muhammad Younis
    Nadia Cheemaa
    Syed A. Mahmood
    Syed T. R. Rizvi
    Optical and Quantum Electronics, 2016, 48
  • [34] Topological Solitons of the Nonlinear Schrödinger’s Equation with Fourth Order Dispersion
    Anjan Biswas
    Daniela Milovic
    International Journal of Theoretical Physics, 2009, 48
  • [35] Comparison of Solutions of the General Nonlinear Amplitude Equation and a Modified Schrӧdinger Equation
    A. M. Dakova
    D. Y. Dakova
    L. M. Kovachev
    V. I. Slavchev
    Journal of Russian Laser Research, 2016, 37 : 155 - 163
  • [36] Solitons for the cubic-quintic nonlinear Schrödinger equation with Raman effect in nonlinear optics
    Ping Wang
    Tao Shang
    Li Feng
    Yingjie Du
    Optical and Quantum Electronics, 2014, 46 : 1117 - 1126
  • [37] Chirped optical solitons and stability analysis of the nonlinear Schr?dinger equation with nonlinear chromatic dispersion
    Thilagarajah Mathanaranjan
    Mir Sajjad Hashemi
    Hadi Rezazadeh
    Lanre Akinyemi
    Ahmet Bekir
    Communications in Theoretical Physics, 2023, 75 (08) : 56 - 64
  • [38] Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive index
    Kudryashov, Nikolay A.
    Applied Mathematics Letters, 2022, 128
  • [39] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [40] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66