Application of Physics-Informed Neural Networks to River Silting Simulation

被引:3
|
作者
Omarova, Perizat [1 ]
Amirgaliyev, Yedilkhan [1 ]
Kozbakova, Ainur [1 ]
Ataniyazova, Aisulyu [1 ]
机构
[1] Inst Informat & Computat Technol CS MSHE RK, Alma Ata 050010, Kazakhstan
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 21期
关键词
water pollution; artificial neural networks; CFD; Euler equation; PINN; CHANNEL;
D O I
10.3390/app132111983
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water resource pollution, particularly in river channels, presents a grave environmental challenge that necessitates a comprehensive and systematic approach encompassing assessment, forecasting, and effective management. This article provides a comprehensive exploration of the methodology and modeling tools employed to scrutinize the process of river channel pollution due to silting, rooted in the fundamental principles of hydrodynamics and pollutant transport dynamics. The study's methodology seamlessly integrates numerical simulations with state-of-the-art neural network techniques, with a specific focus on the physics-informed neural network (PINN) method. This innovative approach represents a groundbreaking fusion of artificial neural networks (ANNs) and physical equations, offering a more efficient and precise means of modeling a wide array of complex processes and phenomena. The proposed mathematical model, grounded in the Euler equation, has been meticulously implemented using the Ansys Fluent software package, ensuring accuracy and reliability in the computations. In a pivotal phase of the research, a thorough comparative analysis was conducted between the results derived using the PINN method and those obtained using conventional numerical approaches with the Ansys Fluent software package. The outcomes of this analysis revealed the superior performance of the PINN method, characterized by the generation of smoother pressure fluctuation profiles and a significantly reduced computation time, underscoring its potential as a transformative modeling tool. The calculated data originating from this study assume paramount significance in the ongoing battle against river sedimentation. Beyond this immediate application, these findings also serve as a valuable resource for creating predictive materials pertaining to river channel silting, thereby empowering decision-makers and environmental stakeholders with essential information. The utilization of modeling techniques to address pollution concerns in river channels holds the potential to revolutionize risk management and safeguard the integrity of our vital water resources. However, it is imperative to underscore that the effectiveness of such models hinges on ongoing monitoring and frequent data updates, ensuring that they remain aligned with real-world conditions. This research not only contributes to the enhanced understanding and proactive management of river channel pollution due to silting but also underscores the pivotal role of advanced modeling methodologies in the preservation of our invaluable water resources for present and future generations.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] On physics-informed neural networks for quantum computers
    Markidis, Stefano
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
  • [22] Physics-Informed Neural Networks for shell structures
    Bastek, Jan-Hendrik
    Kochmann, Dennis M.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [23] fPINNs: FRACTIONAL PHYSICS-INFORMED NEURAL NETWORKS
    Pang, Guofei
    Lu, Lu
    Karniadakis, George E. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2603 - A2626
  • [24] Physics-informed neural networks for diffraction tomography
    Amirhossein Saba
    Carlo Gigli
    Ahmed B.Ayoub
    Demetri Psaltis
    Advanced Photonics, 2022, 4 (06) : 48 - 59
  • [25] PINNProv: Provenance for Physics-Informed Neural Networks
    de Oliveira, Lyncoln S.
    Kunstmann, Liliane
    Pina, Debora
    de Oliveira, Daniel
    Mattoso, Marta
    2023 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS, SBAC-PADW, 2023, : 16 - 23
  • [26] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [27] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [28] Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation
    Fang Ze
    Pan Yong-Quan
    Dai Dong
    Zhang Jun-Bo
    ACTA PHYSICA SINICA, 2024, 73 (14)
  • [29] A metalearning approach for Physics-Informed Neural Networks (PINNs): Application to parameterized PDEs
    Penwarden, Michael
    Zhe, Shandian
    Narayan, Akil
    Kirby, Robert M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 477
  • [30] Application of physics-informed neural networks to inverse problems in unsaturated groundwater flow
    Depina, Ivan
    Jain, Saket
    Valsson, Sigurdur Mar
    Gotovac, Hrvoje
    GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS, 2022, 16 (01) : 21 - 36