Completeness of certain metric spaces of measures

被引:0
|
作者
Dorsch, Florian [1 ]
机构
[1] FAU Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
BALLS; CONTAINS; VALUES;
D O I
10.1007/s00229-022-01399-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the set of finite Borel measures on a separable and directionally limited metric space (X, d) is complete with respect to the metric d(A)(mu, v) = sup (A is an element of A)vertical bar mu (A) - nu(A)vertical bar for all families of Borel sets A that contain every closed ball of X. This allows to prove the existence and uniqueness of the invariant Borel probability measure of certain Markov processes on X. A natural application is a Markov process induced by a random similitude.
引用
收藏
页码:487 / 498
页数:12
相关论文
共 50 条
  • [31] Completeness of certain bimodal logics for subset spaces
    Weiss M.A.
    Parikh R.
    Studia Logica, 2002, 71 (1) : 1 - 30
  • [32] Majorizing measures on metric spaces
    Bednorz, Witold
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (1-2) : 75 - 78
  • [33] Fuzzy measures on metric spaces
    Jiang, QS
    Suzuki, H
    FUZZY SETS AND SYSTEMS, 1996, 83 (01) : 99 - 106
  • [34] INVARIANT MEASURES IN METRIC SPACES
    MYCIELSKI, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (02): : A310 - A310
  • [35] CONSTRUCTION OF MEASURES IN METRIC SPACES
    THOMSON, BS
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 14 (OCT): : 21 - 24
  • [36] HOMEOMORPHIC MEASURES IN METRIC SPACES
    OXTOBY, JC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 24 (03) : 419 - &
  • [37] Spaces of idempotent measures of compact metric spaces
    Bazylevych, Lidia
    Repovs, Dusan
    Zarichnyi, Michael
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (01) : 136 - 144
  • [38] Completeness and compactness properties in metric spaces, topological groups and function spaces
    Dorantes-Aldama, Alejandro
    Shakhmatov, Dmitri
    TOPOLOGY AND ITS APPLICATIONS, 2017, 226 : 134 - 164
  • [39] On weak G-completeness for fuzzy metric spaces
    Adhya, Sugata
    Ray, A. Deb
    SOFT COMPUTING, 2022, 26 (05) : 2099 - 2105
  • [40] A Kirk Type Characterization of Completeness for Partial Metric Spaces
    Romaguera, Salvador
    FIXED POINT THEORY AND APPLICATIONS, 2010,