Completeness of certain metric spaces of measures

被引:0
|
作者
Dorsch, Florian [1 ]
机构
[1] FAU Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
BALLS; CONTAINS; VALUES;
D O I
10.1007/s00229-022-01399-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the set of finite Borel measures on a separable and directionally limited metric space (X, d) is complete with respect to the metric d(A)(mu, v) = sup (A is an element of A)vertical bar mu (A) - nu(A)vertical bar for all families of Borel sets A that contain every closed ball of X. This allows to prove the existence and uniqueness of the invariant Borel probability measure of certain Markov processes on X. A natural application is a Markov process induced by a random similitude.
引用
收藏
页码:487 / 498
页数:12
相关论文
共 50 条
  • [21] The contingent in certain metric spaces
    Germain, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1944, 219 : 381 - 383
  • [22] REMAINDERS OF CERTAIN METRIC SPACES
    MAGILL, KD
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 160 (NOCT) : 411 - &
  • [23] ON CERTAIN EQUIVALENCES OF METRIC SPACES
    Pernecka, Eva
    Spevak, Jan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (01) : 239 - 249
  • [24] Completeness, closedness and metric reflections of pseudometric spaces
    Bilet, Viktoriia
    Dovgoshey, Oleksiy
    TOPOLOGY AND ITS APPLICATIONS, 2023, 327
  • [25] A Characterization of Strong Completeness in Fuzzy Metric Spaces
    Gregori, Valentin
    Minana, Juan-Jose
    Roig, Bernardino
    Sapena, Almanzor
    MATHEMATICS, 2020, 8 (06)
  • [26] On Completeness in Metric Spaces and Fixed Point Theorems
    Gregori, Valentin
    Minana, Juan-Jose
    Roig, Bernardino
    Sapena, Almanzor
    RESULTS IN MATHEMATICS, 2018, 73 (04)
  • [27] On the Upper Completeness of Quasi-metric Spaces
    Chen XiaoDan
    Chen ShaoBai
    2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 446 - 449
  • [28] FIXED POINTS AND COMPLETENESS ON PARTIAL METRIC SPACES
    Paesano, Daniela
    Vetro, Pasquale
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) : 369 - 383
  • [29] On Completeness in Metric Spaces and Fixed Point Theorems
    Valentín Gregori
    Juan-José Miñana
    Bernardino Roig
    Almanzor Sapena
    Results in Mathematics, 2018, 73
  • [30] Topologies on homeomorphism spaces of certain metric spaces
    Ren, JG
    Zhang, XC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (01) : 32 - 36