Experimental full calibration of quantum devices in a semi-device-independent way

被引:1
|
作者
Li, Gong-Chu [1 ,2 ,3 ]
Yin, Zhen-Qiang [1 ,2 ,3 ]
Zhang, Wen-Hao [1 ,2 ]
Chen, Lei [1 ,2 ]
Yin, Peng [1 ,2 ]
Peng, Xing-Xiang [1 ,2 ]
Hong, Xue-Song [1 ,2 ]
Chen, Geng [1 ,2 ,3 ]
Li, Chuan-Feng [1 ,2 ,3 ]
Guo, Guang-Can [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
来源
OPTICA | 2023年 / 10卷 / 12期
基金
中国国家自然科学基金;
关键词
COVERING RADIUS; ENTANGLEMENT;
D O I
10.1364/OPTICA.502274
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Semi-device-independent (SDI) methods offer a credible way to calibrate preparation and measurement devices simultaneously in quantum information processing, using only prior knowledge such as the Hilbert space dimension. To date, the SDI method is restricted to a few state paradigms, which impedes its broader applications. Recently, Tavakoli [Phys. Rev. Lett. 125, 150503 (2020)] proposed an SDI scheme to certify t-designs with discrete and symmetric structures. In this work, we bridge the gap between discrete and continuous structures with a concept termed "covering angle," while maintaining the SDI feature. This concept enables us to evaluate a quantum device's ability to generate arbitrary quantum states in a Hilbert space via calibrating a certain t-design. This so-called full calibration method is further tailored to be tolerant of errors in realistic state production. We demonstrate this full calibration scheme for a qubit system with various t-designs and show that it renders SDI certificates for quantum key distribution, quantum random number generation, and magic state distillability.
引用
收藏
页码:1723 / 1728
页数:6
相关论文
共 50 条
  • [41] Semi-device-independent randomness certification using n → 1 quantum random access codes
    Li, Hong-Wei
    Pawlowski, Marcin
    Yin, Zhen-Qiang
    Guo, Guang-Can
    Han, Zheng-Fu
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [42] Semi-device-independent framework based on natural physical assumptions
    Van Himbeeck, Thomas
    Woodhead, Erik
    Cerf, Nicolas J.
    Garcia-Patron, Raul
    Pironio, Stefano
    QUANTUM, 2017, 1
  • [43] Effects of relaxed assumptions on semi-device-independent randomness expansion
    Wang, Yu-Kun
    Qin, Su-Juan
    Song, Ting-Ting
    Guo, Fen-Zhuo
    Huang, Wei
    Zuo, Hui-Juan
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [44] Security of Semi-Device-Independent Random Number Expansion Protocols
    Dan-Dan Li
    Qiao-Yan Wen
    Yu-Kun Wang
    Yu-Qian Zhou
    Fei Gao
    Scientific Reports, 5
  • [45] Security of a practical semi-device-independent quantum key distribution protocol against collective attacks
    汪洋
    鲍皖苏
    李宏伟
    周淳
    李源
    Chinese Physics B, 2014, (08) : 260 - 264
  • [46] Security of Semi-Device-Independent Random Number Expansion Protocols
    Li, Dan-Dan
    Wen, Qiao-Yan
    Wang, Yu-Kun
    Zhou, Yu-Qian
    Gao, Fei
    SCIENTIFIC REPORTS, 2015, 5
  • [47] Semi-device-independent information processing with spatiotemporal degrees of freedom
    Garner, Andrew J. P.
    Krumm, Marius
    Mueller, Markus P.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [48] Semi-device-independent characterization of multipartite entanglement of states and measurements
    Tavakoli, Armin
    Abbott, Alastair A.
    Renou, Marc-Olivier
    Gisin, Nicolas
    Brunner, Nicolas
    PHYSICAL REVIEW A, 2018, 98 (05)
  • [49] Semi-device-independent self-testing of unsharp measurements
    Miklin, Nikolai
    Borkala, Jakub J.
    Pawlowski, Marcin
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [50] Semi-device-independent random number generation with flexible assumptions
    Matej Pivoluska
    Martin Plesch
    Máté Farkas
    Natália Ružičková
    Clara Flegel
    Natalia Herrera Valencia
    Will McCutcheon
    Mehul Malik
    Edgar A. Aguilar
    npj Quantum Information, 7