Experimental full calibration of quantum devices in a semi-device-independent way

被引:1
|
作者
Li, Gong-Chu [1 ,2 ,3 ]
Yin, Zhen-Qiang [1 ,2 ,3 ]
Zhang, Wen-Hao [1 ,2 ]
Chen, Lei [1 ,2 ]
Yin, Peng [1 ,2 ]
Peng, Xing-Xiang [1 ,2 ]
Hong, Xue-Song [1 ,2 ]
Chen, Geng [1 ,2 ,3 ]
Li, Chuan-Feng [1 ,2 ,3 ]
Guo, Guang-Can [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
来源
OPTICA | 2023年 / 10卷 / 12期
基金
中国国家自然科学基金;
关键词
COVERING RADIUS; ENTANGLEMENT;
D O I
10.1364/OPTICA.502274
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Semi-device-independent (SDI) methods offer a credible way to calibrate preparation and measurement devices simultaneously in quantum information processing, using only prior knowledge such as the Hilbert space dimension. To date, the SDI method is restricted to a few state paradigms, which impedes its broader applications. Recently, Tavakoli [Phys. Rev. Lett. 125, 150503 (2020)] proposed an SDI scheme to certify t-designs with discrete and symmetric structures. In this work, we bridge the gap between discrete and continuous structures with a concept termed "covering angle," while maintaining the SDI feature. This concept enables us to evaluate a quantum device's ability to generate arbitrary quantum states in a Hilbert space via calibrating a certain t-design. This so-called full calibration method is further tailored to be tolerant of errors in realistic state production. We demonstrate this full calibration scheme for a qubit system with various t-designs and show that it renders SDI certificates for quantum key distribution, quantum random number generation, and magic state distillability.
引用
收藏
页码:1723 / 1728
页数:6
相关论文
共 50 条
  • [21] Proof of Security of a Semi-Device-Independent Quantum Key Distribution Protocol
    徐鹏
    鲍皖苏
    李宏伟
    汪洋
    包海泽
    Chinese Physics Letters, 2017, 34 (02) : 13 - 16
  • [22] Proof of Security of a Semi-Device-Independent Quantum Key Distribution Protocol
    Xu, Peng
    Bao, Wan-Su
    Li, Hong-Wei
    Wang, Yang
    Bao, Hai-Ze
    CHINESE PHYSICS LETTERS, 2017, 34 (02)
  • [23] Semi-device-independent certification of the number of measurements
    Veeren, Isadora
    Plavala, Martin
    Leppaejaervi, Leevi
    Uola, Roope
    PHYSICAL REVIEW A, 2024, 109 (06)
  • [24] On the security of semi-device-independent QKD protocols
    Anubhav Chaturvedi
    Maharshi Ray
    Ryszard Veynar
    Marcin Pawłowski
    Quantum Information Processing, 2018, 17
  • [25] On the security of semi-device-independent QKD protocols
    Chaturvedi, Anubhav
    Ray, Maharshi
    Veynar, Ryszard
    Pawlowski, Marcin
    QUANTUM INFORMATION PROCESSING, 2018, 17 (06)
  • [26] Numerical framework for semi-device-independent quantum random-number generators
    Zhou, Hongyi
    PHYSICAL REVIEW A, 2023, 107 (05)
  • [27] Finite-key bound for semi-device-independent quantum key distribution
    Zhou, Chun
    Xu, Peng
    Bao, Wan-Su
    Wang, Yang
    Zhang, Yingying
    Jiang, Mu-Sheng
    Li, Hong-Wei
    OPTICS EXPRESS, 2017, 25 (15): : 16971 - 16980
  • [28] Semi-device-independent certification of indefinite causal order in a photonic quantum switch
    Cao, Huan
    Bavaresco, Jessica
    Wang, Ning-Ning
    Rozema, Lee A.
    Zhang, Chao
    Huang, Yun-Feng
    Liu, Bi-Heng
    Li, Chuan-Feng
    Guo, Guang-Can
    Walther, Philip
    OPTICA, 2023, 10 (05): : 561 - 568
  • [29] Bounds on semi-device-independent quantum random-number expansion capabilities
    Mannalath, Vaisakh
    Pathak, Anirban
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [30] Semi-device-independent characterization of quantum measurements under a minimum overlap assumption
    Shi, Weixu
    Cal, Yu
    Brask, Jonatan Bohr
    Zbinden, Hugo
    Brunner, Nicolas
    PHYSICAL REVIEW A, 2019, 100 (04)