Experimental full calibration of quantum devices in a semi-device-independent way

被引:1
|
作者
Li, Gong-Chu [1 ,2 ,3 ]
Yin, Zhen-Qiang [1 ,2 ,3 ]
Zhang, Wen-Hao [1 ,2 ]
Chen, Lei [1 ,2 ]
Yin, Peng [1 ,2 ]
Peng, Xing-Xiang [1 ,2 ]
Hong, Xue-Song [1 ,2 ]
Chen, Geng [1 ,2 ,3 ]
Li, Chuan-Feng [1 ,2 ,3 ]
Guo, Guang-Can [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
来源
OPTICA | 2023年 / 10卷 / 12期
基金
中国国家自然科学基金;
关键词
COVERING RADIUS; ENTANGLEMENT;
D O I
10.1364/OPTICA.502274
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Semi-device-independent (SDI) methods offer a credible way to calibrate preparation and measurement devices simultaneously in quantum information processing, using only prior knowledge such as the Hilbert space dimension. To date, the SDI method is restricted to a few state paradigms, which impedes its broader applications. Recently, Tavakoli [Phys. Rev. Lett. 125, 150503 (2020)] proposed an SDI scheme to certify t-designs with discrete and symmetric structures. In this work, we bridge the gap between discrete and continuous structures with a concept termed "covering angle," while maintaining the SDI feature. This concept enables us to evaluate a quantum device's ability to generate arbitrary quantum states in a Hilbert space via calibrating a certain t-design. This so-called full calibration method is further tailored to be tolerant of errors in realistic state production. We demonstrate this full calibration scheme for a qubit system with various t-designs and show that it renders SDI certificates for quantum key distribution, quantum random number generation, and magic state distillability.
引用
收藏
页码:1723 / 1728
页数:6
相关论文
共 50 条
  • [2] Experimental semi-device-independent tests of quantum channels
    Agresti, Iris
    Poderini, Davide
    Carvacho, Gonzalo
    Sarra, Leopoldo
    Chaves, Rafael
    Buscemi, Francesco
    Dall'Arno, Michele
    Sciarrino, Fabio
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (03)
  • [3] Semi-device-independent quantum money
    Horodecki, Karol
    Stankiewicz, Maciej
    NEW JOURNAL OF PHYSICS, 2020, 22 (02):
  • [4] Semi-device-independent security of one-way quantum key distribution
    Pawlowski, Marcin
    Brunner, Nicolas
    PHYSICAL REVIEW A, 2011, 84 (01):
  • [5] Semi-device-independent quantum money with coherent states
    Bozzio, Mathieu
    Diamanti, Eleni
    Grosshans, Frederic
    PHYSICAL REVIEW A, 2019, 99 (02)
  • [6] Experimental entanglement quantification for unknown quantum states in a semi-device-independent manner
    Yu GUO
    Lijinzhi LIN
    Huan CAO
    Chao ZHANG
    Xiaodie LIN
    Xiao-Min HU
    Bi-Heng LIU
    Yun-Feng HUANG
    Zhaohui WEI
    Yong-Jian HAN
    Chuan-Feng LI
    Guang-Can GUO
    Science China(Information Sciences), 2023, 66 (08) : 72 - 79
  • [7] Experimental entanglement quantification for unknown quantum states in a semi-device-independent manner
    Guo, Yu
    Lin, Lijinzhi
    Cao, Huan
    Zhang, Chao
    Lin, Xiaodie
    Hu, Xiao-Min
    Liu, Bi-Heng
    Huang, Yun-Feng
    Wei, Zhaohui
    Han, Yong-Jian
    Li, Chuan-Feng
    Guo, Guang-Can
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (08)
  • [8] Semi-device-independent quantum key agreement protocol
    Yu-Guang Yang
    Yue-Chao Wang
    Jian Li
    Yi-Hua Zhou
    Wei-Min Shi
    Quantum Information Processing, 2021, 20
  • [9] Experimental Semi-Device-Independent Certification of Entangled Measurements
    Bennet, Adam
    Vertesi, Tamas
    Saunders, Dylan J.
    Brunner, Nicolas
    Pryde, G. J.
    PHYSICAL REVIEW LETTERS, 2014, 113 (08)
  • [10] Semi-device-independent quantum key agreement protocol
    Yang, Yu-Guang
    Wang, Yue-Chao
    Li, Jian
    Zhou, Yi-Hua
    Shi, Wei-Min
    QUANTUM INFORMATION PROCESSING, 2021, 20 (11)