A new lower bound for the independent domination number of a tree

被引:1
|
作者
Cabrera-Martinez, Abel [1 ]
机构
[1] Univ Cordoba, Dept Matemat, Campus Rabanales, Cordoba 14071, Spain
关键词
Independent domination number; Domination number; Trees; GRAPHS;
D O I
10.1051/ro/2023100
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A set D of vertices in a graph G is an independent dominating set of G if D is an independent set and every vertex not in D is adjacent to a vertex in D. The independent domination number of G, denoted by i(G), is the minimum cardinality among all independent dominating sets of G. In this paper we show that if T is a nontrivial tree, then i(T) = n(T)+?(T )-l(T)+2/4 , where n(T), ?(T) 4 and 1(T) represent the order, the domination number and the number of leaves of T, respectively. In addition, we characterize the trees achieving this new lower bound.
引用
收藏
页码:1951 / 1956
页数:6
相关论文
共 50 条
  • [41] A NEW BOUND ON THE DOMINATION NUMBER OF CONNECTED CUBIC GRAPHS
    Kostochka, A., V
    Stocker, C.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2009, 6 : 465 - 504
  • [42] A new upper bound on the total domination number of a graph
    Henning, Michael A.
    Yeo, Anders
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [43] Lower bound for the Sombor index of trees with a given total domination number
    Sun, Xiaoling
    Du, Jianwei
    Mei, Yinzhen
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (06):
  • [44] GRAPHS WITH EQUAL DOMINATION AND INDEPENDENT DOMINATION NUMBER
    Vaidya, S. K.
    Pandit, R. M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2015, 5 (01): : 74 - 79
  • [45] A new bound on the domination number of graphs with minimum degree two
    Henning, Michael A.
    Schiermeyer, Ingo
    Yeo, Anders
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [46] A lower bound for the second Zagreb index of trees with given Roman domination number
    Jamri, Ayu Ameliatul Shahilah Ahmad
    Movahedi, Fateme
    Hasni, Roslan
    Akhbari, Mohammad Hadi
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023, 8 (02) : 391 - 396
  • [47] Domination number, independent domination number and k-independence number in trees
    Cui, Qing
    Zou, Xu
    DISCRETE APPLIED MATHEMATICS, 2025, 366 : 176 - 184
  • [48] Lower bound on the weakly connected domination number of a cycle-disjoint graph
    Koh, K.
    Ting, T.
    Xu, Z.
    Dong, F.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 46 : 157 - 166
  • [49] DOMINATION NUMBER, INDEPENDENT DOMINATION NUMBER AND 2-INDEPENDENCE NUMBER IN TREES
    Dehgardi, Nasrin
    Sheikholeslami, Seyed Mahmoud
    Valinavaz, Mina
    Aram, Hamideh
    Volkmann, Lutz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 39 - 49
  • [50] A note on the independent domination number versus the domination number in bipartite graphs
    Shaohui Wang
    Bing Wei
    Czechoslovak Mathematical Journal, 2017, 67 : 533 - 536