A new lower bound for the independent domination number of a tree

被引:1
|
作者
Cabrera-Martinez, Abel [1 ]
机构
[1] Univ Cordoba, Dept Matemat, Campus Rabanales, Cordoba 14071, Spain
关键词
Independent domination number; Domination number; Trees; GRAPHS;
D O I
10.1051/ro/2023100
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A set D of vertices in a graph G is an independent dominating set of G if D is an independent set and every vertex not in D is adjacent to a vertex in D. The independent domination number of G, denoted by i(G), is the minimum cardinality among all independent dominating sets of G. In this paper we show that if T is a nontrivial tree, then i(T) = n(T)+?(T )-l(T)+2/4 , where n(T), ?(T) 4 and 1(T) represent the order, the domination number and the number of leaves of T, respectively. In addition, we characterize the trees achieving this new lower bound.
引用
收藏
页码:1951 / 1956
页数:6
相关论文
共 50 条
  • [21] A new upper bound on the independent 2-rainbow domination number in trees
    Gholami, Elham
    Rad, Nader Jafari
    Tehranian, Abolfazl
    Rasouli, Hamid
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, : 261 - 270
  • [22] An upper bound on the total restrained domination number of a tree
    Hattingh, Johannes H.
    Jonck, Elizabeth
    Joubert, Ernst J.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2010, 20 (03) : 205 - 223
  • [23] A General Lower Bound for the Domination Number of Cylindrical Graphs
    Juan Carreno, Jose
    Antonio Martinez, Jose
    Luz Puertas, Maria
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1671 - 1684
  • [24] A lower bound for secure domination number of an outerplanar graph
    Araki, Toru
    DISCRETE APPLIED MATHEMATICS, 2024, 357 : 81 - 85
  • [25] A General Lower Bound for the Domination Number of Cylindrical Graphs
    José Juan Carreño
    José Antonio Martínez
    María Luz Puertas
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1671 - 1684
  • [26] Upper Domination Number and Domination Number in a Tree
    Jou, Min-Jen
    ARS COMBINATORIA, 2010, 94 : 245 - 250
  • [27] Roman Domination Number and Domination Number of a Tree
    SONG Xiao-xin
    Department of Mathematics
    Department of Basic Course
    数学季刊, 2006, (03) : 358 - 367
  • [28] A New Bound on the Total Domination Subdivision Number
    O. Favaron
    H. Karami
    R. Khoeilar
    S. M. Sheikholeslami
    Graphs and Combinatorics, 2009, 25 : 41 - 47
  • [29] A New Bound on the Total Domination Subdivision Number
    Favaron, O.
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    GRAPHS AND COMBINATORICS, 2009, 25 (01) : 41 - 47
  • [30] A NEW UPPER BOUND FOR THE DOMINATION NUMBER OF A GRAPH
    MARCU, D
    QUARTERLY JOURNAL OF MATHEMATICS, 1985, 36 (142): : 221 - 223