PANNA 2.0: Efficient neural network interatomic potentials and new architectures

被引:4
|
作者
Pellegrini, Franco [1 ]
Lot, Ruggero [1 ]
Shaidu, Yusuf [1 ,2 ,3 ]
Kucukbenli, Emine [4 ,5 ]
机构
[1] Scuola Int Super Studi Avanzati, Trieste, Italy
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] Nvidia Corp, Santa Clara, CA 95051 USA
[5] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 159卷 / 08期
关键词
SIMULATIONS;
D O I
10.1063/5.0158075
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present the latest release of PANNA 2.0 (Properties from Artificial Neural Network Architectures), a code for the generation of neural network interatomic potentials based on local atomic descriptors and multilayer perceptrons. Built on a new back end, this new release of PANNA features improved tools for customizing and monitoring network training, better graphics processing unit support including a fast descriptor calculator, new plugins for external codes, and a new architecture for the inclusion of long-range electrostatic interactions through a variational charge equilibration scheme. We present an overview of the main features of the new code, and several benchmarks comparing the accuracy of PANNA models to the state of the art, on commonly used benchmarks as well as richer datasets.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Initialization of neural network architectures
    Kubat, M
    Koprinska, I
    SECOND INTERNATIONAL CONFERENCE ON NONLINEAR PROBLEMS IN AVIATION & AEROSPACE VOL 1 AND 2, 1999, : 373 - 380
  • [42] Towards Searching Efficient and Accurate Neural Network Architectures in Binary Classification Problems
    Alparslan, Yigit
    Moyer, Ethan Jacob
    Isozaki, Isamu Mclean
    Schwartz, Daniel
    Dunlop, Adam
    Dave, Shesh
    Kim, Edward
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [43] Development of the new interatomic potentials for the wurtzite phase of ZnO
    Xin-Wei Wang
    Xiao-Wei Sun
    Ting Song
    Jun-Hong Tian
    Zi-Jiang Liu
    Applied Physics A, 2022, 128
  • [44] Development of the new interatomic potentials for the wurtzite phase of ZnO
    Wang, Xin-Wei
    Sun, Xiao-Wei
    Song, Ting
    Tian, Jun-Hong
    Liu, Zi-Jiang
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (06):
  • [45] New network architectures
    Carrier Data Div, Antwerp, Belgium
    Alcatel Telecommun Rev, 3 (185-191):
  • [46] New network architectures
    De Prycker, M
    Van Landegem, T
    ALCATEL TELECOMMUNICATIONS REVIEW, 1999, (03): : 185 - 191
  • [47] PyGim : An Efficient Graph Neural Network Library for Real Processing-In-Memory Architectures
    Giannoula, Christina
    Yang, Peiming
    Fernandez, Ivan
    Yang, Jiacheng
    Durvasula, Sankeerth
    Li, Yu xin
    Sadrosadati, Mohammad
    Luna, Juan gomez
    Mutlu, Onur
    Pekhimenko, Gennady
    PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2024, 8 (03)
  • [48] Designing Efficient NoC-Based Neural Network Architectures for Identification of Epileptic Seizure
    Ghosh A.
    Roy A.P.
    Patra R.
    Mondal H.K.
    SN Computer Science, 2021, 2 (5)
  • [49] ON THE CHOICE OF GRAPH NEURAL NETWORK ARCHITECTURES
    Vignac, Clement
    Ortiz-Jimenez, Guillermo
    Frossard, Pascal
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8489 - 8493
  • [50] Optimizing Convolutional Neural Network Architectures
    Balderas, Luis
    Lastra, Miguel
    Benitez, Jose M.
    MATHEMATICS, 2024, 12 (19)