PANNA 2.0: Efficient neural network interatomic potentials and new architectures

被引:4
|
作者
Pellegrini, Franco [1 ]
Lot, Ruggero [1 ]
Shaidu, Yusuf [1 ,2 ,3 ]
Kucukbenli, Emine [4 ,5 ]
机构
[1] Scuola Int Super Studi Avanzati, Trieste, Italy
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] Nvidia Corp, Santa Clara, CA 95051 USA
[5] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 159卷 / 08期
关键词
SIMULATIONS;
D O I
10.1063/5.0158075
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present the latest release of PANNA 2.0 (Properties from Artificial Neural Network Architectures), a code for the generation of neural network interatomic potentials based on local atomic descriptors and multilayer perceptrons. Built on a new back end, this new release of PANNA features improved tools for customizing and monitoring network training, better graphics processing unit support including a fast descriptor calculator, new plugins for external codes, and a new architecture for the inclusion of long-range electrostatic interactions through a variational charge equilibration scheme. We present an overview of the main features of the new code, and several benchmarks comparing the accuracy of PANNA models to the state of the art, on commonly used benchmarks as well as richer datasets.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular Simulations
    Pelaez, Raul P.
    Simeon, Guillem
    Galvelis, Raimondas
    Mirarchi, Antonio
    Eastman, Peter
    Doerr, Stefan
    Tholke, Philipp
    Markland, Thomas E.
    De Fabritiis, Gianni
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (10) : 4076 - 4087
  • [22] Exploration of transferable and uniformly accurate neural network interatomic potentials using optimal experimental design
    Zaverkin, Viktor
    Kaestner, Johannes
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [23] How graph neural network interatomic potentials extrapolate: Role of the message-passing algorithm
    Kang, Sungwoo
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (24):
  • [24] Spline-based neural network interatomic potentials: Blending classical and machine learning models
    Vita, Joshua A.
    Trinkle, Dallas R.
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 232
  • [25] Efficient equivariant model for machine learning interatomic potentials
    Yang, Ziduo
    Wang, Xian
    Li, Yifan
    Lv, Qiujie
    Chen, Calvin Yu-Chian
    Shen, Lei
    NPJ COMPUTATIONAL MATERIALS, 2025, 11 (01)
  • [26] Applications of genetic algorithms and neural networks to interatomic potentials
    Hobday, S
    Smith, R
    BelBruno, J
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1999, 153 (1-4): : 247 - 263
  • [27] Applications of genetic algorithms and neural networks to interatomic potentials
    Hobday, Steven
    Smith, Roger
    Belbruno, Joe
    Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 1999, 153 (1-4): : 247 - 263
  • [28] Proper orthogonal descriptors for efficient and accurate interatomic potentials
    Nguyen, Ngoc Cuong
    Rohskopf, Andrew
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 480
  • [29] Neural network architectures for efficient modeling of FX futures options volatility
    Gordon H. Dash
    Choudary R. Hanumara
    Nina Kajiji
    Operational Research, 2003, 3 (1) : 3 - 23
  • [30] Reversible densification and cooperative atomic movement induced “compaction” in vitreous silica: a new sight from deep neural network interatomic potentials
    Yongnian Qi
    Xiaoguang Guo
    Hao Wang
    Shuohua Zhang
    Ming Li
    Ping Zhou
    Dongming Guo
    Journal of Materials Science, 2023, 58 : 9515 - 9532