Standing and traveling waves in a model of periodically modulated one-dimensional waveguide arrays

被引:2
|
作者
Parker, Ross [1 ]
Aceves, Alejandro [1 ]
Cuevas-Maraver, Jesus [2 ,3 ]
Kevrekidis, P. G. [4 ]
机构
[1] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
[2] Univ Seville, Grp Fis Lineal, Dept Fis Aplicada 1, Escuela Politecn Super, C Virgen de Africa 7, Seville 41011, Spain
[3] Univ Seville, Inst Matemat, Edificio Celestino Mutis, Ave Reina Mercedes s-n, Seville 41012, Spain
[4] Univ Massachusetts Amherst, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
SOLITONS; CONDUCTION; ELECTRONS;
D O I
10.1103/PhysRevE.108.024214
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the present work we study coherent structures in a one-dimensional discrete nonlinear Schrodinger lattice in which the coupling between waveguides is periodically modulated. Numerical experiments with single-site initial conditions show that, depending on the power, the system exhibits two fundamentally different behaviors. At low power, initial conditions with intensity concentrated in a single site give rise to transport, with the energy moving unidirectionally along the lattice, whereas high-power initial conditions yield stationary solutions. We explain these two behaviors, as well as the nature of the transition between the two regimes, by analyzing a simpler model where the couplings between waveguides are given by step functions. For the original model, we numerically construct both stationary and moving coherent structures, which are solutions reproducing themselves exactly after an integer multiple of the coupling period. For the stationary solutions, which are true periodic orbits, we use Floquet analysis to determine the parameter regime for which they are spectrally stable. Typically, the traveling solutions are characterized by having small-amplitude oscillatory tails, although we identify a set of parameters for which these tails disappear. These parameters turn out to be independent of the lattice size, and our simulations suggest that for these parameters, numerically exact traveling solutions are stable.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Observation of nonlinear surface waves in modulated waveguide arrays
    Qi, Xinyuan
    Garanovich, Ivan L.
    Xu, Zhiyong
    Sukhorukov, Andrey A.
    Krolikowski, Wieslaw
    Mitchell, Arnan
    Zhang, Guoquan
    Neshev, Dragomir N.
    Kivshar, Yuri S.
    OPTICS LETTERS, 2009, 34 (18) : 2751 - 2753
  • [42] Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation
    Gerard, Patrick
    Zhang, Zhifei
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (02): : 178 - 210
  • [43] Traveling waves and localized modes in one-dimensional homogeneous granular chains with no precompression
    Starosvetsky, Yuli
    Vakakis, Alexander F.
    PHYSICAL REVIEW E, 2010, 82 (02):
  • [44] Formation and light guiding properties of dark solitons in one-dimensional waveguide arrays
    Smirnov, Eugene
    Rueter, Christian E.
    Stepic, Milutin
    Kip, Detlef
    Shandarov, Vladimir
    PHYSICAL REVIEW E, 2006, 74 (06):
  • [45] One-Dimensional Massless Dirac-Particles in Waveguide Arrays with Alternating Coupling
    Zeuner, J. M.
    Efremidis, N. K.
    Keil, R.
    Dreisow, F.
    Tuennermann, A.
    Nolte, S.
    Szameit, A.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [46] Modulational instability in one-dimensional saturable waveguide arrays:: Comparison with Kerr nonlinearity
    Stepic, Milutin
    Rueter, Christian E.
    Kip, Detlef
    Maluckov, Aleksandra
    Hadzievski, Ljupco
    OPTICS COMMUNICATIONS, 2006, 267 (01) : 229 - 235
  • [47] A ONE-DIMENSIONAL SEARCH WITH TRAVELING COST
    KIKUTA, K
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1990, 33 (03) : 262 - 276
  • [48] A note on the existence of standing waves for one-dimensional wave-Schrodinger system
    Kikuchi, Hiroaki
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E2004 - E2011
  • [49] One-dimensional optomagnonic microcavities for selective excitation of perpendicular standing spin waves
    Ozerov, V. A.
    Sylgacheva, D. A.
    Kozhaev, M. A.
    Mikhailova, T.
    Berzhansky, V. N.
    Hamidi, Mehri
    Zvezdin, A. K.
    Belotelov, V. I.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 543
  • [50] Asymptotics of One-Dimensional Linear Standing Water Waves with Dispersion and Degeneracy on the Boundary
    Anikin, A. Yu.
    MATHEMATICAL NOTES, 2020, 107 (5-6) : 838 - 843