Modulational instability in one-dimensional saturable waveguide arrays:: Comparison with Kerr nonlinearity

被引:12
|
作者
Stepic, Milutin
Rueter, Christian E.
Kip, Detlef
Maluckov, Aleksandra
Hadzievski, Ljupco
机构
[1] Clausthal Univ Technol, Inst Phys & Phys Technol, D-38678 Clausthal Zellerfeld, Germany
[2] Vinca Inst Nucl Sci, Belgrade 11001, Serbia
[3] Fac Sci & Math, Dept Phys, Nish 18001, Serbia
关键词
discrete modulational instability; saturable nonlinearity;
D O I
10.1016/j.optcom.2006.06.019
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Discrete modulational instability within the first band of uniform one-dimensional waveguide arrays possessing a saturable self-defocusing nonlinearity is investigated in detail within the coupled mode approach. Explicit analytical results for both the threshold and the maximal gain of instability are compared with the corresponding data from waveguide arrays exhibiting Kerr nonlinearity. We find that saturation bounds the interval of existence of discrete modulational instability, stabilizes the frequency region of perturbations around +/-pi/2 and decreases both gain and critical spatial frequency of perturbations. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:229 / 235
页数:7
相关论文
共 50 条
  • [1] Beam interactions in one-dimensional saturable waveguide arrays
    Stepic, Milutin
    Smirnov, Eugene
    Rueter, Christian E.
    Proenneke, Liv
    Kip, Detlef
    Shandarov, Vladimir
    PHYSICAL REVIEW E, 2006, 74 (04):
  • [2] Dark lattice solitons in one-dimensional waveguide arrays with defocusing saturable nonlinearity and alternating couplings
    A. Kanshu
    C. E. Rüter
    D. Kip
    J. Cuevas
    P. G. Kevrekidis
    The European Physical Journal D, 2012, 66
  • [3] Dark lattice solitons in one-dimensional waveguide arrays with defocusing saturable nonlinearity and alternating couplings
    Kanshu, A.
    Rueter, C. E.
    Kip, D.
    Cuevas, J.
    Kevrekidis, P. G.
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (07):
  • [4] One-dimensional transverse modulational instability in nonlocal media with a reorientational nonlinearity
    Assanto, G
    Peccianti, M
    Conti, C
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2004, 10 (05) : 862 - 869
  • [5] Modulational instability in non-Kerr-like optical fibers with saturable nonlinearity
    Guangzi Xuebao/Acta Photonica Sinica, 1998, 27 (01): : 41 - 45
  • [6] Observation of discrete gap solitons in one-dimensional waveguide arrays with alternating spacings and saturable defocusing nonlinearity
    Kanshu, A.
    Rueter, C. E.
    Kip, D.
    Shandarov, V.
    Belicev, P. P.
    Ilic, I.
    Stepic, M.
    OPTICS LETTERS, 2012, 37 (07) : 1253 - 1255
  • [7] MODULATIONAL INSTABILITY OF CONTINUOUS WAVES AND ONE-DIMENSIONAL TEMPORAL SOLITONS IN FIBER ARRAYS
    ACEVES, AB
    DEANGELIS, C
    LUTHER, GG
    RUBENCHIK, AM
    OPTICS LETTERS, 1994, 19 (16) : 1186 - 1188
  • [8] Modulational instability and solitary waves in one-dimensional lattices with intensity-resonant nonlinearity
    Stepic, Milutin
    Maluckov, Aleksandra
    Stojanovic, Marija
    Chen, Feng
    Kip, Detlef
    PHYSICAL REVIEW A, 2008, 78 (04):
  • [9] Modulational instability in a biexciton molecular chain with saturable nonlinearity effects
    Sali, Issa
    Tabi, C. B.
    Ekobena, H. P.
    Kofane, T. C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (01):
  • [10] Modulational instability in nonlinear saturable media with competing nonlocal nonlinearity
    Tabi, Conrad Bertrand
    Tagwo, Hippolyte
    Kofane, Timoleon Crepin
    PHYSICAL REVIEW E, 2022, 106 (05)