Modulational instability in one-dimensional saturable waveguide arrays:: Comparison with Kerr nonlinearity

被引:12
|
作者
Stepic, Milutin
Rueter, Christian E.
Kip, Detlef
Maluckov, Aleksandra
Hadzievski, Ljupco
机构
[1] Clausthal Univ Technol, Inst Phys & Phys Technol, D-38678 Clausthal Zellerfeld, Germany
[2] Vinca Inst Nucl Sci, Belgrade 11001, Serbia
[3] Fac Sci & Math, Dept Phys, Nish 18001, Serbia
关键词
discrete modulational instability; saturable nonlinearity;
D O I
10.1016/j.optcom.2006.06.019
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Discrete modulational instability within the first band of uniform one-dimensional waveguide arrays possessing a saturable self-defocusing nonlinearity is investigated in detail within the coupled mode approach. Explicit analytical results for both the threshold and the maximal gain of instability are compared with the corresponding data from waveguide arrays exhibiting Kerr nonlinearity. We find that saturation bounds the interval of existence of discrete modulational instability, stabilizes the frequency region of perturbations around +/-pi/2 and decreases both gain and critical spatial frequency of perturbations. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:229 / 235
页数:7
相关论文
共 50 条
  • [41] Modulational instability in a one-dimensional spin-orbit coupled Bose-Bose mixture
    Singh, Dheerendra
    Parit, Mithilesh K.
    Raju, Thokala Soloman
    Panigrahi, Prasanta K.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (24)
  • [42] Nonlinear evolution of the modulational instability and chaos using one-dimensional Zakharov equations and a simplified model
    Sharma, RP
    Batra, K
    Verga, AD
    PHYSICS OF PLASMAS, 2005, 12 (02)
  • [43] Pattern selection and modulational instability in the one-dimensional modified complex Ginzburg-Landau equation
    Mohamadou, A
    Jiotsa, AK
    Kofané, TC
    CHAOS SOLITONS & FRACTALS, 2005, 24 (04) : 957 - 966
  • [44] Modulation instability in one-dimensional bi-periodic optical lattice made of negative index metamaterials waveguide arrays
    Zhang, Lingling
    Ke, Lin
    Wang, Qing
    OPTIK, 2021, 245
  • [45] Modulational instability and breathing motion in the two-dimensional nonlinear Schrodinger equation with a one-dimensional harmonic potential
    Sakaguchi, Hidetsugu
    Kageyama, Yusuke
    PHYSICAL REVIEW E, 2013, 88 (05):
  • [46] Modulational instability and rogue waves in one-dimensional nonlinear acoustic metamaterials: case of diatomic model
    Joseph, Mora
    Justin, Mibaile
    David, Vroumsia
    Sindanne, Sylvere Azakine
    Betchewe, Gambo
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [47] Modulational instability of plane waves in nonlocal non-Kerr media with random diffraction and nonlinearity
    Doktorov, E. V.
    Molchan, M. A.
    ICONO 2007: NONLINEAR SPACE-TIME DYNAMICS, 2007, 6725
  • [48] Formation and light guiding properties of dark solitons in one-dimensional waveguide arrays
    Smirnov, Eugene
    Rueter, Christian E.
    Stepic, Milutin
    Kip, Detlef
    Shandarov, Vladimir
    PHYSICAL REVIEW E, 2006, 74 (06):
  • [49] One-Dimensional Massless Dirac-Particles in Waveguide Arrays with Alternating Coupling
    Zeuner, J. M.
    Efremidis, N. K.
    Keil, R.
    Dreisow, F.
    Tuennermann, A.
    Nolte, S.
    Szameit, A.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [50] Standing and traveling waves in a model of periodically modulated one-dimensional waveguide arrays
    Parker, Ross
    Aceves, Alejandro
    Cuevas-Maraver, Jesus
    Kevrekidis, P. G.
    PHYSICAL REVIEW E, 2023, 108 (02)