Several families of MDS QECCs and MDS EAQECCs from Hermitian self-orthogonal GRS codes

被引:0
|
作者
Li, Yang [1 ]
Zhu, Shixin [1 ]
Zhang, Yanhui [1 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Reed-Solomon code; QECC; EAQECC; MDS code; Hermitian self-orthogonal code; STABILIZER CODES; QUANTUM;
D O I
10.1007/s11128-024-04319-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Maximum distance separable (MDS) quantum error-correcting codes (QECCs) and MDS entanglement-assisted QECCs (EAQECCs) play significant roles in quantum information theory. In this paper, we construct several new families of MDS QECCs and MDS EAQECCs by utilizing Hermitian self-orthogonal generalized Reed-Solomon codes. These newly obtained MDS QECCs contain some known classes of MDS QECCs as subclasses and some of them have larger minimum distance. In addition, many q-ary MDS QECCs and MDS EAQECCs in our constructions have length exceeding q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q+1$$\end{document} and minimum distance surpassing q2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{q}{2}+1$$\end{document}.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Several families of MDS QECCs and MDS EAQECCs from Hermitian self-orthogonal GRS codes
    Yang Li
    Shixin Zhu
    Yanhui Zhang
    Quantum Information Processing, 23
  • [2] Application of Hermitian self-orthogonal GRS codes to some quantum MDS codes
    Guo, Guanmin
    Li, Ruihu
    Liu, Yang
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 76
  • [3] Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes
    Jin, Lingfei
    Ling, San
    Luo, Jinquan
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) : 4735 - 4740
  • [4] TWO NEW CLASSES OF HERMITIAN SELF-ORTHOGONAL NON-GRS MDS CODES AND THEIR APPLICATIONS
    Luo, Gaojun
    Cao, Xiwang
    Ezerman, Martianus Frederic
    Ling, San
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (04) : 921 - 933
  • [5] New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes
    Hao Chen
    Designs, Codes and Cryptography, 2023, 91 : 2665 - 2676
  • [6] New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes
    Chen, Hao
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (08) : 2665 - 2676
  • [7] Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes
    Jin, Lingfei
    Kan, Haibin
    Wen, Jie
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (03) : 463 - 471
  • [8] Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes
    Lingfei Jin
    Haibin Kan
    Jie Wen
    Designs, Codes and Cryptography, 2017, 84 : 463 - 471
  • [9] Several classes of Galois self-orthogonal MDS codes and related applications
    Li, Yang
    Su, Yunfei
    Zhu, Shixin
    Li, Shitao
    Shi, Minjia
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 91
  • [10] Construction of quantum MDS codes from Hermitian self-orthogonal generalized Reed-Solomon codes
    Wan, Ruhao
    Zheng, Xiujing
    Zhu, Shixin
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2025, 17 (01): : 181 - 205