Several families of MDS QECCs and MDS EAQECCs from Hermitian self-orthogonal GRS codes

被引:0
|
作者
Li, Yang [1 ]
Zhu, Shixin [1 ]
Zhang, Yanhui [1 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Reed-Solomon code; QECC; EAQECC; MDS code; Hermitian self-orthogonal code; STABILIZER CODES; QUANTUM;
D O I
10.1007/s11128-024-04319-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Maximum distance separable (MDS) quantum error-correcting codes (QECCs) and MDS entanglement-assisted QECCs (EAQECCs) play significant roles in quantum information theory. In this paper, we construct several new families of MDS QECCs and MDS EAQECCs by utilizing Hermitian self-orthogonal generalized Reed-Solomon codes. These newly obtained MDS QECCs contain some known classes of MDS QECCs as subclasses and some of them have larger minimum distance. In addition, many q-ary MDS QECCs and MDS EAQECCs in our constructions have length exceeding q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q+1$$\end{document} and minimum distance surpassing q2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{q}{2}+1$$\end{document}.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Hermitian Self-Orthogonal Constacyclic Codes over F4m
    Guan Q.-Q.
    Kai X.-S.
    Zhu S.-X.
    Guan, Qian-Qing (gqianqing@sina.cn), 2017, Chinese Institute of Electronics (45): : 1469 - 1474
  • [42] New MDS EAQECCs from constacyclic codes over finite non-chain rings
    Li Lin
    Yaozong Zhang
    Xiaotong Hou
    Jian Gao
    Quantum Information Processing, 22
  • [43] New MDS EAQECCs from constacyclic codes over finite non-chain rings
    Lin, Li
    Zhang, Yaozong
    Hou, Xiaotong
    Gao, Jian
    QUANTUM INFORMATION PROCESSING, 2023, 22 (06)
  • [44] Self-Orthogonal Codes From p-Divisible Codes
    Li, Xiaoru
    Heng, Ziling
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (12) : 8562 - 8586
  • [45] Hermitian Self-Dual, MDS, and Generalized Reed-Solomon Codes
    Niu, Yongfeng
    Yue, Qin
    Wu, Yansheng
    Hu, Liqin
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (05) : 781 - 784
  • [46] Construction of self-orthogonal codes from combinatorial designs
    Dzhumalieva-Stoeva, M.
    Bouyukliev, I. G.
    Monev, V.
    PROBLEMS OF INFORMATION TRANSMISSION, 2012, 48 (03) : 250 - 258
  • [47] Self-orthogonal binary codes from odd graphs
    Fish, W.
    Key, J. D.
    Mwambene, E.
    UTILITAS MATHEMATICA, 2017, 103 : 73 - 97
  • [48] LCD codes and almost optimally extendable codes from self-orthogonal codes
    Wang, Xinran
    Heng, Ziling
    Li, Fengwei
    Yue, Qin
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (10) : 2901 - 2926
  • [49] Construction of self-orthogonal codes from combinatorial designs
    M. Dzhumalieva-Stoeva
    I. G. Bouyukliev
    V. Monev
    Problems of Information Transmission, 2012, 48 : 250 - 258
  • [50] Binary LCD Codes and Self-Orthogonal Codes From a Generic Construction
    Zhou, Zhengchun
    Li, Xia
    Tang, Chunming
    Ding, Cunsheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (01) : 16 - 27