A matrix version of the Steinitz lemma

被引:0
|
作者
Barany, Imre [1 ,2 ]
机构
[1] Alfred Renyi Inst Math, 13-15 Realtanoda St, H-1053 Budapest, Hungary
[2] UCL, Dept Math, Gower St, London WC1E 6BT, England
来源
关键词
SERIES;
D O I
10.1515/crelle-2024-0008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Steinitz lemma, a classic from 1913, states that a(1), ... , a(n), a sequence of vectors in R-d with Sigma(n)(i=1) a(i) = 0, can be rearranged so that every partial sum of the rearranged sequence has norm at most 2d max parallel to a(i)parallel to. In the matrix version A is a k x n matrix with entries a(i)(j) is an element of R-d with Sigma(k)(j=1) Sigma(n)(i=1) a(i)(j) = 0. It is proved in [T. Oertel, J. Paat and R. Weismantel, A colorful Steinitz lemma with applications to block integer programs, Math. Program. 204 (2024), 677-702] that there is a rearrangement of row j of A (for every j) such that the sum of the entries in the first m columns of the rearranged matrix has norm at most 40d(5) max parallel to a(i)(j)parallel to (for every m). We improve this bound to (4d - 2) max parallel to a(i)(j)parallel to.
引用
收藏
页码:261 / 267
页数:7
相关论文
共 50 条
  • [31] CONDITIONS FOR A MATRIX KRONECKER LEMMA
    HALL, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 76 : 271 - 277
  • [32] A Robust Version of Hegedus's Lemma, with Applications
    Srinivasan, Srikanth
    PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 2020, : 1349 - 1362
  • [33] On a Continuous-Time Version of Willems' Lemma
    Lopez, Victor G.
    Mueller, Matthias A.
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 2759 - 2764
  • [34] An algorithmic version of the blow-up lemma
    Komlos, J
    Sarkozy, GN
    Szemeredi, E
    RANDOM STRUCTURES & ALGORITHMS, 1998, 12 (03) : 297 - 312
  • [35] On a new absolute version of Siegel’s lemma
    Maxwell Forst
    Lenny Fukshansky
    Research in the Mathematical Sciences, 2024, 11
  • [36] TIME-VARYING VERSION OF LEMMA OF LYAPUNOV
    ANDERSON, BD
    MOORE, JB
    ELECTRONICS LETTERS, 1967, 3 (07) : 293 - &
  • [37] THE RATE OF RETURN REGULATED VERSION OF SHEPHARD LEMMA
    FARE, R
    LOGAN, J
    ECONOMICS LETTERS, 1983, 13 (04) : 297 - 302
  • [38] STRONG VERSION OF SNAKE LEMMA IN EXACT CATEGORIES
    Rong, Shi
    Zhang, Pu
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2021, 23 (02) : 151 - 163
  • [39] A VERSION OF OLECHS LEMMA IN A PROBLEM OF THE CALCULUS OF VARIATIONS
    CELLINA, A
    ZAGATTI, S
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (04) : 1114 - 1127
  • [40] On a new absolute version of Siegel's lemma
    Forst, Maxwell
    Fukshansky, Lenny
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (01)