Influence of cooling methods on high-temperature residual mechanical characterization of strain-hardening cementitious composites

被引:0
|
作者
Kumar, Dhanendra [1 ,2 ]
Soliman, Amr A. [2 ]
Ranade, Ravi [2 ]
机构
[1] Nanyang Technol Univ NTU, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Univ Buffalo State Univ New York, Dept Civil Struct & Environm Engn CSEE, Buffalo, NY USA
关键词
cooling; ECC; fire; high temperature; quenching; residual strength; SHCC; size-effect; ELEVATED-TEMPERATURES; NORMAL STRENGTH; STEEL FIBERS; FLY-ASH; CONCRETE; MICROSTRUCTURE; PERFORMANCE; EXPOSURE; FIRE; PVA;
D O I
10.1002/fam.3187
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Residual strength tests are commonly used to characterize the high-temperature mechanical properties of concrete materials. In these tests, the specimens are heated to a target temperature in a furnace and then cooled down to room temperature, followed by mechanical testing at room temperature. This research investigates the influence of the cooling method on the residual strength of Strain Hardening Cementitious Composites (SHCC) after exposure to 400 degrees C and 600 degrees C. Two types of cooling methods - furnace-cooling (within a closed furnace) and water-cooling (immersed in a water tank) - were adopted. Four different SHCC previously investigated by the authors for high-temperature residual mechanical and bond behavior with steel were studied. Two different specimen sizes were tested under uniaxial compression and flexure to characterize the residual compressive strength and modulus of rupture. The effect of the cooling method was prominent for the normalized residual modulus of rupture at 400 degrees C, but not at 600 degrees C. The cooling method had no effect on the normalized residual compressive strength of any material at either of the two temperatures, except one of the SHCC (PVA-SC) at 400 degrees C. Specimen size also had no effect on the normalized residual compressive strength and modulus of rupture irrespective of the cooling method.
引用
收藏
页码:338 / 352
页数:15
相关论文
共 50 条
  • [41] Mechanical Characteristics of Ultra High Performance Strain Hardening Cementitious Composites
    Yu, Kequan
    Yu, Jiangtao
    Lu, Zhoudao
    STRAIN-HARDENING CEMENT-BASED COMPOSITES, 2018, 15 : 230 - 237
  • [42] Influence of fibre length on the mechanical behavior of steel-PVA hybrid fibre-reinforced strain-hardening cementitious composites at high temperatures
    Kumar, Dhanendra
    Deshpande, Alok A.
    Ranade, Ravi
    Indian Concrete Journal, 2019, 93 (12): : 30 - 38
  • [43] Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials
    Hung, Chung-Chan
    Su, Yen-Fang
    Su, Yu-Min
    COMPOSITES PART B-ENGINEERING, 2018, 133 : 15 - 25
  • [44] Micromechanics-Based Optimization of Pigmentable Strain-Hardening Cementitious Composites
    Yang, En-Hua
    Garcez, Estela O.
    Li, Victor C.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2014, 26 (07)
  • [45] Investigation of localised behaviour of strain-hardening cementitious composites for RC strengthening
    Zhang, Yongxing
    Bai, Shu
    Zhang, Qingbin
    ADVANCES IN CEMENT RESEARCH, 2016, 28 (06) : 414 - 421
  • [46] Mechanical performance of ultra-high-performance strain-hardening cementitious composites according to binder composition and curing conditions
    Kim, Min-Jae
    Oh, Taekgeun
    Yoo, Doo-Yeol
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2022, 22 (02)
  • [47] Fracture and multiple-cracking modelling of strain-hardening cementitious composites
    Wang, Qingmin
    Li, Qinghua
    Yin, Xing
    Xu, Shilang
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 280
  • [48] Event-based lattice modeling of strain-hardening cementitious composites
    Jingu Kang
    John E. Bolander
    International Journal of Fracture, 2017, 206 : 245 - 261
  • [49] Intelligent characterization of complex cracks in strain-hardening cementitious composites based on generative computer vision
    Guo, Pengwei
    Meng, Weina
    Bao, Yi
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 411
  • [50] A mesoscale model for multiple cracking behavior of strain-hardening cementitious composites
    Yu, Peng
    Li, Teng
    He, Sheng
    Ren, Zhaoyong
    Luo, Yuejing
    JOURNAL OF BUILDING ENGINEERING, 2024, 86