Influence of cooling methods on high-temperature residual mechanical characterization of strain-hardening cementitious composites

被引:0
|
作者
Kumar, Dhanendra [1 ,2 ]
Soliman, Amr A. [2 ]
Ranade, Ravi [2 ]
机构
[1] Nanyang Technol Univ NTU, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Univ Buffalo State Univ New York, Dept Civil Struct & Environm Engn CSEE, Buffalo, NY USA
关键词
cooling; ECC; fire; high temperature; quenching; residual strength; SHCC; size-effect; ELEVATED-TEMPERATURES; NORMAL STRENGTH; STEEL FIBERS; FLY-ASH; CONCRETE; MICROSTRUCTURE; PERFORMANCE; EXPOSURE; FIRE; PVA;
D O I
10.1002/fam.3187
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Residual strength tests are commonly used to characterize the high-temperature mechanical properties of concrete materials. In these tests, the specimens are heated to a target temperature in a furnace and then cooled down to room temperature, followed by mechanical testing at room temperature. This research investigates the influence of the cooling method on the residual strength of Strain Hardening Cementitious Composites (SHCC) after exposure to 400 degrees C and 600 degrees C. Two types of cooling methods - furnace-cooling (within a closed furnace) and water-cooling (immersed in a water tank) - were adopted. Four different SHCC previously investigated by the authors for high-temperature residual mechanical and bond behavior with steel were studied. Two different specimen sizes were tested under uniaxial compression and flexure to characterize the residual compressive strength and modulus of rupture. The effect of the cooling method was prominent for the normalized residual modulus of rupture at 400 degrees C, but not at 600 degrees C. The cooling method had no effect on the normalized residual compressive strength of any material at either of the two temperatures, except one of the SHCC (PVA-SC) at 400 degrees C. Specimen size also had no effect on the normalized residual compressive strength and modulus of rupture irrespective of the cooling method.
引用
收藏
页码:338 / 352
页数:15
相关论文
共 50 条
  • [31] Experiments and performances of strain-hardening fiber low cementitious composites
    Cho, Chang-Geun
    Lim, Hyeon-Jin
    Lee, Bang-Yeon
    Choi, Yeol
    ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (06) : 1 - 7
  • [32] Evaluation of strain-hardening cementitious composites for RC seismic strengthening
    Zhang, Yongxing
    Peng, Hui
    Lv, Weihua
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-STRUCTURES AND BUILDINGS, 2017, 170 (08) : 570 - 580
  • [33] Electrical and mechanical properties of high-strength strain-hardening cementitious composites containing silvered polyethylene fibers
    Oh, Taekgeun
    Kim, Min-Jae
    Kim, Soonho
    Lee, Seung Kyun
    Kang, Min-Chang
    Yoo, Doo-Yeol
    JOURNAL OF BUILDING ENGINEERING, 2022, 46
  • [35] Influence of Coarse Aggregate on the Mechanical Behavior of Strain Hardening Cementitious Composites
    Ueda, Naoshi
    Kawamoto, Atsushi
    STRAIN-HARDENING CEMENT-BASED COMPOSITES, 2018, 15 : 139 - 146
  • [36] Review of Dynamic Mechanical Property of Strain-Hardening Cementitious Composite
    Guo W.
    Zhang P.
    Bao J.
    Sun Z.
    Tian Y.
    Zhao K.
    Zhao T.
    Cailiao Daobao/Materials Reports, 2021, 35 (17): : 17199 - 17209
  • [37] Dynamic mechanical behavior of strain-hardening cementitious composites under drop weight impact loading
    Guo, Weina
    Tian, Yupeng
    Wang, Wentao
    Wang, Bing
    Zhang, Peng
    Bao, Jiuwen
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 23 : 5573 - 5586
  • [38] Mechanical performance of Strain-Hardening Cementitious Composites (SHCC) with hybrid polyvinyl alcohol and steel fibers
    Yu, Jing
    Chen, Yixin
    Leung, Christopher K. Y.
    COMPOSITE STRUCTURES, 2019, 226
  • [39] Strain-rate effects on the tensile behavior of strain-hardening cementitious composites
    Yang, En-Hua
    Li, Victor C.
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 52 : 96 - 104
  • [40] High-performance strain-hardening cementitious composites with tensile strain capacity exceeding 4%: A review
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    CEMENT & CONCRETE COMPOSITES, 2022, 125