Multi-Scale Discrete Cosine Transform Network for Building Change Detection in Very-High-Resolution Remote Sensing Images

被引:6
|
作者
Zhu, Yangpeng [1 ]
Fan, Lijuan [1 ]
Li, Qianyu [1 ]
Chang, Jing [1 ]
机构
[1] Xian Shiyou Univ, Sch Econ & Management, Xian 710065, Peoples R China
关键词
building change detection; frequency; discrete cosine transform; attention; remote sensing images; FOOTPRINT EXTRACTION; CLASSIFICATION; INFORMATION; INDEX;
D O I
10.3390/rs15215243
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the rapid development and promotion of deep learning technology in the field of remote sensing, building change detection (BCD) has made great progress. Some recent approaches have improved detailed information about buildings by introducing high-frequency information. However, there are currently few methods considering the effect of other frequencies in the frequency domain for enhancing feature representation. To overcome this problem, we propose a multi-scale discrete cosine transform (DCT) network (MDNet) with U-shaped architecture, which is composed of two novel DCT-based modules, i.e., the dual-dimension DCT attention module (D3AM) and multi-scale DCT pyramid (MDP). The D3AM aims to employ the DCT to obtain frequency information from both spatial and channel dimensions for refining building feature representation. Furthermore, the proposed MDP can excavate multi-scale frequency information and construct a feature pyramid through multi-scale DCT, which can elevate multi-scale feature extraction of ground targets with various scales. The proposed MDNet was evaluated with three widely used BCD datasets (WHU-CD, LEVIR-CD, and Google), demonstrating that our approach can achieve more convincing results compared to other comparative methods. Moreover, extensive ablation experiments also present the effectiveness of our proposed D3AM and MDP.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Multi-featured multi-scale combination of high-resolution remote sensing images for building extraction
    Niu, Yuhan
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2023, 9 (01)
  • [32] Multi-Scale Feature Interaction Network for Remote Sensing Change Detection
    Zhang, Chong
    Zhang, Yonghong
    Lin, Haifeng
    REMOTE SENSING, 2023, 15 (11)
  • [33] A CONCEPTUAL FRAMEWORK FOR CHANGE DETECTION IN VERY HIGH RESOLUTION REMOTE SENSING IMAGES
    Bruzzone, Lorenzo
    Bovolo, Francesca
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2555 - 2558
  • [34] LOCAL PATCHES FOR CHANGE DETECTION IN VERY HIGH RESOLUTION REMOTE SENSING IMAGES
    Gong, Xing
    Corpetti, Thomas
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 237 - 240
  • [35] SSN: Scale Selection Network for Multi-Scale Object Detection in Remote Sensing Images
    Lin, Zhili
    Leng, Biao
    REMOTE SENSING, 2024, 16 (19)
  • [36] A scene change detection framework for multi-temporal very high resolution remote sensing images
    Wu, Chen
    Zhang, Lefei
    Zhang, Liangpei
    SIGNAL PROCESSING, 2016, 124 : 184 - 197
  • [37] OctaveNet: An efficient multi-scale pseudo-siamese network for change detection in remote sensing images
    Farhadi N.
    Kiani A.
    Ebadi H.
    Multimedia Tools and Applications, 2024, 83 (36) : 83941 - 83961
  • [38] Multi-scale Residual Network for Building Extraction from Satellite Remote Sensing Images
    Hou, Xin
    Wang, Pu
    An, Wei
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1348 - 1351
  • [39] Multi-Scale Feature Fusion Attention Network for Building Extraction in Remote Sensing Images
    Liu, Jia
    Gu, Hang
    Li, Zuhe
    Chen, Hongyang
    Chen, Hao
    ELECTRONICS, 2024, 13 (05)
  • [40] Building Change Detection Based on Fully Convolutional Network in High-Resolution Remote Sensing Images
    Wang, Wei
    Xia, Luocheng
    Wang, Xin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14865 : 111 - 123