Multi-Scale Feature Interaction Network for Remote Sensing Change Detection

被引:7
|
作者
Zhang, Chong [1 ]
Zhang, Yonghong [1 ]
Lin, Haifeng [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equipm, Nanjing 210044, Peoples R China
[2] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210044, Peoples R China
关键词
remote sensing; change detection; convolution; multi-scale feature interaction; deep learning;
D O I
10.3390/rs15112880
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Change detection (CD) is an important remote sensing (RS) data analysis technology. Existing remote sensing change detection (RS-CD) technologies cannot fully consider situations where pixels between bitemporal images do not correspond well on a one-to-one basis due to factors such as seasonal changes and lighting conditions. Existing networks construct two identical feature extraction branches through convolution, which share weights. The two branches work independently and do not merge until the feature mapping is sent to the decoder head. This results in a lack of feature information interaction between the two images. So, directing attention to the change area is of research interest. In complex backgrounds, the loss of edge details is very important. Therefore, this paper proposes a new CD algorithm that extracts multi-scale feature information through the backbone network in the coding stage. According to the task characteristics of CD, two submodules (the Feature Interaction Module and Detail Feature Guidance Module) are designed to make the feature information between the bitemporal RS images fully interact. Thus, the edge details are restored to the greatest extent while fully paying attention to the change areas. Finally, in the decoding stage, the feature information of different levels is fully used for fusion and decoding operations. We build a new CD dataset to further verify and test the model's performance. The generalization and robustness of the model are further verified by using two open datasets. However, due to the relatively simple construction of the model, it cannot handle the task of multi-classification CD well. Therefore, further research on multi-classification CD algorithms is recommended. Moreover, due to the high production cost of CD datasets and the difficulty in obtaining them in practical tasks, future research will look into semi-supervised or unsupervised related CD algorithms.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Multi-scale feature progressive fusion network for remote sensing image change detection
    Lu, Di
    Cheng, Shuli
    Wang, Liejun
    Song, Shiji
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Multi-scale feature progressive fusion network for remote sensing image change detection
    Di Lu
    Shuli Cheng
    Liejun Wang
    Shiji Song
    Scientific Reports, 12
  • [3] MFINet: Multi-Scale Feature Interaction Network for Change Detection of High-Resolution Remote Sensing Images
    Ren, Wuxu
    Wang, Zhongchen
    Xia, Min
    Lin, Haifeng
    REMOTE SENSING, 2024, 16 (07)
  • [4] MIFNet: Multi-Scale Interaction Fusion Network for Remote Sensing Image Change Detection
    Xie, Weiying
    Shao, Wenjie
    Li, Daixun
    Li, Yunsong
    Fang, Leyuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2725 - 2739
  • [5] Transformer-based multi-scale feature fusion network for remote sensing change detection
    Liang, Shike
    Hua, Zhen
    Li, Jinjiang
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
  • [6] MFSFNet: Multi-Scale Feature Subtraction Fusion Network for Remote Sensing Image Change Detection
    Huang, Zhiqi
    You, Hongjian
    REMOTE SENSING, 2023, 15 (15)
  • [7] Remote sensing image change detection network with multi-scale feature information mining and fusion
    Xue, Songdong
    Zhang, Minming
    Qiao, Gangzhu
    Zhang, Chaofan
    Wang, Bin
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (02)
  • [8] Heterogeneous remote sensing image change detection network based on multi-scale feature modal transformation
    Cheng, Wei
    Feng, Yining
    Sun, Yicen
    Wang, Xianghai
    APPLIED SOFT COMPUTING, 2025, 170
  • [9] Multi-scale graph reasoning network for remote sensing image change detection
    Yu, Shangguan
    Li, Jinjiang
    Zheng, Chen
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (10) : 3306 - 3332
  • [10] Enhanced Feature Interaction Network for Remote Sensing Change Detection
    Liang, Shike
    Hua, Zhen
    Li, Jinjiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20