Multi-Scale Feature Interaction Network for Remote Sensing Change Detection

被引:7
|
作者
Zhang, Chong [1 ]
Zhang, Yonghong [1 ]
Lin, Haifeng [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equipm, Nanjing 210044, Peoples R China
[2] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210044, Peoples R China
关键词
remote sensing; change detection; convolution; multi-scale feature interaction; deep learning;
D O I
10.3390/rs15112880
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Change detection (CD) is an important remote sensing (RS) data analysis technology. Existing remote sensing change detection (RS-CD) technologies cannot fully consider situations where pixels between bitemporal images do not correspond well on a one-to-one basis due to factors such as seasonal changes and lighting conditions. Existing networks construct two identical feature extraction branches through convolution, which share weights. The two branches work independently and do not merge until the feature mapping is sent to the decoder head. This results in a lack of feature information interaction between the two images. So, directing attention to the change area is of research interest. In complex backgrounds, the loss of edge details is very important. Therefore, this paper proposes a new CD algorithm that extracts multi-scale feature information through the backbone network in the coding stage. According to the task characteristics of CD, two submodules (the Feature Interaction Module and Detail Feature Guidance Module) are designed to make the feature information between the bitemporal RS images fully interact. Thus, the edge details are restored to the greatest extent while fully paying attention to the change areas. Finally, in the decoding stage, the feature information of different levels is fully used for fusion and decoding operations. We build a new CD dataset to further verify and test the model's performance. The generalization and robustness of the model are further verified by using two open datasets. However, due to the relatively simple construction of the model, it cannot handle the task of multi-classification CD well. Therefore, further research on multi-classification CD algorithms is recommended. Moreover, due to the high production cost of CD datasets and the difficulty in obtaining them in practical tasks, future research will look into semi-supervised or unsupervised related CD algorithms.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Multi-scale Cross Dual Attention Network for Building Change Detection in Remote Sensing Images
    Zhang J.
    Yan Z.
    Ma S.
    Journal of Geo-Information Science, 2023, 25 (12) : 2487 - 2500
  • [22] MFMENet: multi-scale features mutual enhancement network for change detection in remote sensing images
    Li, Shuaitao
    Song, Yonghong
    Wu, Xiaomeng
    Su, You
    Zhang, Yuanlin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (10) : 3248 - 3273
  • [23] Remote Sensing Image Change Detection on Multi-Scale MRF Fusion
    Wang, W. X.
    Yu, Tianchao
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY VIII, 2011, 8156
  • [24] Remote Sensing Small Object Detection Network Based on Multi-Scale Feature Extraction and Information Fusion
    Qu, Junsuo
    Liu, Tong
    Tang, Zongbing
    Duan, Yifei
    Yao, Heng
    Hu, Jiyuan
    REMOTE SENSING, 2025, 17 (05)
  • [25] Remote Sensing Small Object Detection Network Based on Attention Mechanism and Multi-Scale Feature Fusion
    Qu, Junsuo
    Tang, Zongbing
    Zhang, Le
    Zhang, Yanghai
    Zhang, Zhenguo
    REMOTE SENSING, 2023, 15 (11)
  • [26] Lightweight Multi-Scale Feature Fusion Network for Salient Object Detection in Optical Remote Sensing Images
    Li, Jun
    Huang, Kaigen
    ELECTRONICS, 2025, 14 (01):
  • [27] Multi-scale network for remote sensing segmentation
    Wang, Gaihua
    Zhai, Qianyu
    Lin, Jinheng
    IET IMAGE PROCESSING, 2022, 16 (06) : 1742 - 1751
  • [28] MSNet: Multi-Scale Network for Object Detection in Remote Sensing Images
    Gao, Tao
    Xia, Shilin
    Liu, Mengkun
    Zhang, Jing
    Chen, Ting
    Li, Ziqi
    PATTERN RECOGNITION, 2025, 158
  • [29] Remote Sensing Rotating Object Detection Based on Multi-Scale Feature Extraction
    Wu, Luobing
    Gu, Yuhai
    Wu, Wenhao
    Fan, Shuaixin
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (12)
  • [30] Multi-scale feature fusion optical remote sensing target detection method
    Bai, Liang
    Ding, Xuewen
    Liu, Ying
    Chang, Limei
    OPTOELECTRONICS LETTERS, 2025, 21 (04) : 226 - 233