A Time-Domain Wavefront Computing Accelerator With a 32 x 32 Reconfigurable PE Array

被引:1
|
作者
Yu, Chengshuo [1 ,2 ]
Mu, Junjie [1 ]
Su, Yuqi [1 ]
Chai, Kevin Tshun Chuan [2 ]
Kim, Tony Tae-Hyoung [1 ]
Kim, Bongjin [3 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] ASTAR, Inst Microelect, Singapore 138634, Singapore
[3] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
Time-domain analysis; Random access memory; Image edge detection; Repeaters; Search problems; Delays; Lattices; High scalability; King's graph; maze solving; path planning accelerator; scientific simulation; single-source shortest path; SRAM; time domain; true wavefront computing; IN-MEMORY; PROCESSOR;
D O I
10.1109/JSSC.2023.3236376
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a hardware accelerator realizing true time-domain wavefront computing in a massive parallel two-dimensional (2-D) processing element (PE) array. The proposed 2-D time-domain PE array is designed for multiple applications based on its scalable and reconfigurable architecture. The shortest path problem (a classical problem in graph theory) is one of the critical problems to solve using the proposed accelerator. Unlike the A* search algorithm, a heuristic method widely used in shortest path searching problems, the proposed accelerator requires only the propagation of rising-edge signals through the PE array without calculating or estimating the distances from the start to the goal. Hence, a single execution of the proposed time-domain wavefront computing provides all the optimal paths from a start point to an arbitrary goal. Besides the King's graph model used for solving the shortest path searching, the PE array is reconfigured to a simpler lattice graph model and solves other problems, such as maze solving we used in this article as a benchmark. In addition, we used the proposed accelerator to demonstrate a scientific simulation. The propagation of circular or planar wavefronts was simulated using single or multiple start points using King's graph configuration. A 1 x 1 mm(2) test chip with a 32 x 32 reconfigurable time-domain PE array is fabricated using a 65-nm process. For a 2-D map with 32 x 32 vertices, the proposed PE array consumes 776 pJ per task and achieves 1.6 G edges/second search rate using 1.2-/1.0-V core supply voltages.
引用
收藏
页码:2372 / 2382
页数:11
相关论文
共 50 条
  • [31] A 32x32 SPAD array based readout integrated circuit for LiDAR Applications
    Cao, Jing
    Hu, Xiaoyan
    Yang, Lijun
    Li, Bin
    INTERNATIONAL CONFERENCE ON OPTOELECTRONIC AND MICROELECTRONIC TECHNOLOGY AND APPLICATION, 2020, 11617
  • [32] Ex Vivo HIFU Experiments Using a 32 x 32-Element CMUT Array
    Yoon, Hyo-Seon
    Chang, Chienliu
    Jang, Ji Hoon
    Bhuyan, Anshuman
    Choe, Jung Woo
    Nikoozadeh, Amin
    Watkins, Ronald D.
    Stephens, Douglas N.
    Pauly, Kim Butts
    Khuri-Yakub, Butrus T.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2016, 63 (12) : 2150 - 2158
  • [33] A 32 x 32 temperature and tactile sensing array using PI-copper films
    Yang, Y. -J
    Cheng, M. -Y.
    Shih, S. -C.
    Huang, X. -H.
    Tsao, C. -M.
    Chang, F. -Y.
    Fan, K. -C.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2010, 46 (9-12): : 945 - 956
  • [34] A Reconfigurable Time-Domain Comparator for Multi-Sensing Applications
    Zhong, Xiaopeng
    Wang, Bo
    Bermak, Amine
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 349 - 352
  • [35] Performance Evaluation of jPET-RD Detector Composed of 32 x 32 x 4 LYSO Crystal Array
    Takahashi, Kei
    Murayama, Hideo
    Inadama, Naoko
    Tsuda, Tomoaki
    Yamaya, Taiga
    Yoshida, Eiji
    Shibuya, Kengo
    Nishikido, Fumihiko
    Kitamura, Keishi
    Kawai, Hideyuki
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6, 2007, 14 : 1695 - +
  • [36] Hard X-ray test and evaluation of a prototype 32 x 32 pixel gallium-arsenide array
    Erd, C
    Owens, A
    Brammertz, G
    Bavdaz, M
    Peacock, A
    Lämsä, V
    Nenonen, S
    Andersson, H
    Haack, N
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 487 (1-2): : 78 - 89
  • [37] A Wide-Angle Time-Domain Electronically Scanned Array Based on Energy-Pattern-Reconfigurable Elements
    Jiang, Zhiguo
    Xiao, Shaoqiu
    Li, Yan
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (09): : 1598 - 1602
  • [38] Single Pixel Performance of a 32 x 32 Ti/Au TES Array With Broadband X-Ray Spectra
    D'Andrea, Matteo
    Taralli, Emanuele
    Akamatsu, Hiroki
    Gottardi, Luciano
    Nagayoshi, Kenichiro
    Ravensberg, Kevin
    Ridder, Marcel L.
    Vaccaro, Davide
    de Vries, Cor P.
    de Wit, Martin
    Bruijn, Marcel P.
    Hoogeveen, Ruud W. M.
    Gao, Jian-Rong
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2021, 31 (05)
  • [39] Design and Time-Domain Analysis for a Novel Pattern Reconfigurable Antenna
    Zhang, Guang-Min
    Hong, Jin-Song
    Wang, Bing-Zhong
    Song, Gangbing
    Li, Peng
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2011, 10 : 365 - 368
  • [40] Time-domain Characterization of Reconfigurable Intelligent Surfaces for Wireless Communications
    Pettanice, Giuseppe
    Loreto, Fabrizio
    Di Marco, Piergiuseppe
    Romano, Daniele
    Santucci, Fortunato
    Alesii, Roberto
    Antonini, Giulio
    2022 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC EUROPE 2022), 2022, : 566 - 571