A Time-Domain Wavefront Computing Accelerator With a 32 x 32 Reconfigurable PE Array

被引:1
|
作者
Yu, Chengshuo [1 ,2 ]
Mu, Junjie [1 ]
Su, Yuqi [1 ]
Chai, Kevin Tshun Chuan [2 ]
Kim, Tony Tae-Hyoung [1 ]
Kim, Bongjin [3 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] ASTAR, Inst Microelect, Singapore 138634, Singapore
[3] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
Time-domain analysis; Random access memory; Image edge detection; Repeaters; Search problems; Delays; Lattices; High scalability; King's graph; maze solving; path planning accelerator; scientific simulation; single-source shortest path; SRAM; time domain; true wavefront computing; IN-MEMORY; PROCESSOR;
D O I
10.1109/JSSC.2023.3236376
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a hardware accelerator realizing true time-domain wavefront computing in a massive parallel two-dimensional (2-D) processing element (PE) array. The proposed 2-D time-domain PE array is designed for multiple applications based on its scalable and reconfigurable architecture. The shortest path problem (a classical problem in graph theory) is one of the critical problems to solve using the proposed accelerator. Unlike the A* search algorithm, a heuristic method widely used in shortest path searching problems, the proposed accelerator requires only the propagation of rising-edge signals through the PE array without calculating or estimating the distances from the start to the goal. Hence, a single execution of the proposed time-domain wavefront computing provides all the optimal paths from a start point to an arbitrary goal. Besides the King's graph model used for solving the shortest path searching, the PE array is reconfigured to a simpler lattice graph model and solves other problems, such as maze solving we used in this article as a benchmark. In addition, we used the proposed accelerator to demonstrate a scientific simulation. The propagation of circular or planar wavefronts was simulated using single or multiple start points using King's graph configuration. A 1 x 1 mm(2) test chip with a 32 x 32 reconfigurable time-domain PE array is fabricated using a 65-nm process. For a 2-D map with 32 x 32 vertices, the proposed PE array consumes 776 pJ per task and achieves 1.6 G edges/second search rate using 1.2-/1.0-V core supply voltages.
引用
收藏
页码:2372 / 2382
页数:11
相关论文
共 50 条
  • [21] A Parallel 32x32 Time-To-Digital Converter Array Fabricated in a 130 nm Imaging CMOS Technology
    Gersbach, M.
    Maruyama, Y.
    Labonne, E.
    Richardson, J.
    Walker, R.
    Grant, L.
    Henderson, R.
    Borghetti, F.
    Stoppa, D.
    Charbon, E.
    2009 PROCEEDINGS OF ESSCIRC, 2009, : 197 - +
  • [22] Experimental demonstration of phase correction with a 32 X 32 microelectromechanical systems mirror and a spatially filtered wavefront sensor
    Poyneer, LA
    Bauman, B
    Macintosh, BA
    Dillon, D
    Severson, S
    OPTICS LETTERS, 2006, 31 (03) : 293 - 295
  • [23] Throughput Optimization for Time-Domain Neuromorphic Computing
    Bergthold, Karsten
    Hendy, Hagar
    Merkel, Cory
    Das, Tejasvi
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 136 - 140
  • [24] The 4x32 FIRGA array - a pacesetter for a 52x32 element gallium arsenide focal plane array
    Katterloher, R
    Barl, L
    Beeman, J
    Czech, E
    Engemann, D
    Frenzl, O
    Haegel, N
    Haller, EE
    Henning, T
    Hermans, L
    Jakob, G
    Konuma, M
    Pilbratt, G
    INFRARED ASTRONOMICAL INSTRUMENTATION, PTS 1-2, 1998, 3354 : 116 - 125
  • [25] Time-Domain Subsampling and Reconstruction for Microphone Array
    Kawaguchi, Yohei
    Takashima, Ryoichi
    Endo, Takashi
    Togami, Masahito
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 370 - 374
  • [26] Time-domain properties of phased array antennas
    Leatherwood, DA
    Corey, LE
    Cotton, RB
    Mitchell, BS
    2000 IEEE INTERNATIONAL CONFERENCE ON PHASED ARRAY SYSTEMS AND TECHNOLOGY, PROCEEDINGS, 2000, : 25 - 28
  • [27] Time-Domain Analysis of Resonator Array Buffers
    Dumeige, Yannick
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2009, 21 (07) : 435 - 437
  • [28] FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series
    Buchholz, Jan
    Krieger, Jan Wolfgang
    Mocsar, Gabor
    Kreith, Balazs
    Charbon, Edoardo
    Vamosi, Gyorgy
    Kebschull, Udo
    Langowski, Joerg
    OPTICS EXPRESS, 2012, 20 (16): : 17767 - 17782
  • [29] A 32 x 32 ISFET Chemical Sensing Array With Integrated Trapped Charge and Gain Compensation
    Hu, Yuanqi
    Moser, Nicolas
    Georgiou, Pantelis
    IEEE SENSORS JOURNAL, 2017, 17 (16) : 5276 - 5284
  • [30] Sensing Beyond the Debye Length: Development of a 32 x 32 CMOS DNA Sensor Array
    Tseng, Lien-Sing
    Lai, Po-Hsuan
    Yang, Chia-Min
    Lu, Michael S. -C.
    IEEE SENSORS LETTERS, 2023, 7 (03)