Query semantic reconstruction for background in few-shot segmentation

被引:2
|
作者
Guan, Haoyan [1 ]
Spratling, Michael [1 ]
机构
[1] Kings Coll London, Dept Informat, London WC2B 4BG, England
来源
VISUAL COMPUTER | 2024年 / 40卷 / 02期
关键词
Few-shot learning; Semantic segmentation; Metric learning;
D O I
10.1007/s00371-023-02817-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Few-shot segmentation (FSS) aims to segment unseen classes using a few annotated samples. Typically, a prototype representing the foreground class is extracted from annotated support image(s) and is matched to features representing each pixel in the query image. However, models learnt in this way are insufficiently discriminatory, and often produce false positives: misclassifying background pixels as foreground. Some FSS methods try to address this issue by using the background in the support image(s) to help identify the background in the query image. However, the backgrounds of these images are often quite distinct, and hence, the support image background information is uninformative. This article proposes a method, QSR, that extracts the background from the query image itself, and as a result is better able to discriminate between foreground and background features in the query image. This is achieved by modifying the training process to associate prototypes with class labels including known classes from the training data and latent classes representing unknown background objects. This class information is then used to extract a background prototype from the query image. To successfully associate prototypes with class labels and extract a background prototype that is capable of predicting a mask for the background regions of the image, the machinery for extracting and using foreground prototypes is induced to become more discriminative between different classes. Experiments achieves state-of-the-art results for both 1-shot and 5-shot FSS on the PASCAL-5(i) and COCO-20(i) dataset. As QSR operates only during training, results are produced with no extra computational complexity during testing.
引用
收藏
页码:799 / 810
页数:12
相关论文
共 50 条
  • [41] Dynamic Prototype Convolution Network for Few-Shot Semantic Segmentation
    Liu, Jie
    Bao, Yanqi
    Xie, Guo-Sen
    Xiong, Huan
    Sonke, Jan-Jakob
    Gavves, Efstratios
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 11543 - 11552
  • [42] Axial Assembled Correspondence Network for Few-Shot Semantic Segmentation
    Yu Liu
    Bin Jiang
    Jiaming Xu
    IEEE/CAAJournalofAutomaticaSinica, 2023, 10 (03) : 711 - 721
  • [43] Axial Assembled Correspondence Network for Few-Shot Semantic Segmentation
    Liu, Yu
    Jiang, Bin
    Xu, Jiaming
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (03) : 711 - 721
  • [44] Few-shot Semantic Segmentation by Exploiting Dynamic and Regional Contexts
    Gu, Hongyu
    Zhuge, Yunzhi
    Zhang, Lu
    Qi, Jinqing
    Lu, Huchuan
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 834 - 839
  • [45] FFNet: Feature Fusion Network for Few-shot Semantic Segmentation
    Wang, Ya-Nan
    Tian, Xiangtao
    Zhong, Guoqiang
    COGNITIVE COMPUTATION, 2022, 14 (02) : 875 - 886
  • [46] Channel Interaction with Local Enhancement for Few-Shot Semantic Segmentation
    Gao, Jie
    Luo, Xiaoliu
    Zhang, Taiping
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [47] FFNet: Feature Fusion Network for Few-shot Semantic Segmentation
    Ya-Nan Wang
    Xiangtao Tian
    Guoqiang Zhong
    Cognitive Computation, 2022, 14 : 875 - 886
  • [48] Generalized Few-Shot Semantic Segmentation for Remote Sensing Images
    Jia, Yuyu
    Li, Jiabo
    Wang, Qi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [49] CobNet: Cross Attention on Object and Background for Few-Shot Segmentation
    Guan, Haoyan
    Michael, Spratling
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 39 - 45
  • [50] Learning Foreground Information Bottleneck for few-shot semantic segmentation
    Hu, Yutao
    Huang, Xin
    Luo, Xiaoyan
    Han, Jungong
    Cao, Xianbin
    Zhang, Jun
    PATTERN RECOGNITION, 2024, 146