Query semantic reconstruction for background in few-shot segmentation

被引:2
|
作者
Guan, Haoyan [1 ]
Spratling, Michael [1 ]
机构
[1] Kings Coll London, Dept Informat, London WC2B 4BG, England
来源
VISUAL COMPUTER | 2024年 / 40卷 / 02期
关键词
Few-shot learning; Semantic segmentation; Metric learning;
D O I
10.1007/s00371-023-02817-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Few-shot segmentation (FSS) aims to segment unseen classes using a few annotated samples. Typically, a prototype representing the foreground class is extracted from annotated support image(s) and is matched to features representing each pixel in the query image. However, models learnt in this way are insufficiently discriminatory, and often produce false positives: misclassifying background pixels as foreground. Some FSS methods try to address this issue by using the background in the support image(s) to help identify the background in the query image. However, the backgrounds of these images are often quite distinct, and hence, the support image background information is uninformative. This article proposes a method, QSR, that extracts the background from the query image itself, and as a result is better able to discriminate between foreground and background features in the query image. This is achieved by modifying the training process to associate prototypes with class labels including known classes from the training data and latent classes representing unknown background objects. This class information is then used to extract a background prototype from the query image. To successfully associate prototypes with class labels and extract a background prototype that is capable of predicting a mask for the background regions of the image, the machinery for extracting and using foreground prototypes is induced to become more discriminative between different classes. Experiments achieves state-of-the-art results for both 1-shot and 5-shot FSS on the PASCAL-5(i) and COCO-20(i) dataset. As QSR operates only during training, results are produced with no extra computational complexity during testing.
引用
收藏
页码:799 / 810
页数:12
相关论文
共 50 条
  • [21] Prediction Calibration for Generalized Few-Shot Semantic Segmentation
    Lu, Zhihe
    He, Sen
    Li, Da
    Song, Yi-Zhe
    Xiang, Tao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 3311 - 3323
  • [22] Few-shot semantic segmentation: a review on recent approaches
    Chang, Zhaobin
    Lu, Yonggang
    Ran, Xingcheng
    Gao, Xiong
    Wang, Xiangwen
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (25): : 18251 - 18275
  • [23] Cross-Domain Few-Shot Semantic Segmentation
    Lei, Shuo
    Zhang, Xuchao
    He, Jianfeng
    Chen, Fanglan
    Du, Bowen
    Lu, Chang-Tien
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 73 - 90
  • [24] Survey on Image Semantic Segmentation in Dilemma of Few-Shot
    Wei, Ting
    Li, Xinlei
    Liu, Hui
    Computer Engineering and Applications, 2024, 59 (02) : 1 - 11
  • [25] Few-shot semantic segmentation in complex industrial components
    Xu C.
    Wang B.
    Gan J.
    Jiang J.
    Wang Y.
    Tu M.
    Zhou W.
    Multimedia Tools and Applications, 2025, 84 (2) : 1013 - 1030
  • [26] Research Status and Analysis of Few-Shot Semantic Segmentation
    Chen, Shan-Juan
    Yu, Yun-Long
    Li, Ying-Ming
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (10): : 2417 - 2451
  • [27] Few-shot semantic segmentation for industrial defect recognition
    Shi, Xiangwen
    Zhang, Shaobing
    Cheng, Miao
    He, Lian
    Tang, Xianghong
    Cui, Zhe
    COMPUTERS IN INDUSTRY, 2023, 148
  • [28] A lightweight siamese transformer for few-shot semantic segmentation
    Hegui Zhu
    Yange Zhou
    Cong Jiang
    Lianping Yang
    Wuming Jiang
    Zhimu Wang
    Neural Computing and Applications, 2024, 36 : 7455 - 7469
  • [29] Variational Prototype Inference for Few-Shot Semantic Segmentation
    Wang, Haochen
    Yang, Yandan
    Cao, Xianbin
    Zhen, Xiantong
    Snoek, Cees
    Shao, Ling
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 525 - 534
  • [30] Harmonic Feature Activation for Few-Shot Semantic Segmentation
    Liu, Binghao
    Jiao, Jianbin
    Ye, Qixiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3142 - 3153