On a sum involving small arithmetic function and the integral part function

被引:1
|
作者
Li, Jiamin [1 ]
Ma, Jing [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic formula; Multiple exponential sums; Mobius transformation; Integral part function;
D O I
10.1016/j.jnt.2022.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a "small" arithmetic function in the sense that f = g *1 and g(n) << n-j, where j is a fixed non-negative number. In this paper, we study the sum Sigma(n <= x) f([x/n])/[x/n](k) as x -> infinity, where [center dot] denotes the integral part function and k is a fixed non-negative number. Our results generalize the very recent work of Stucky, also combine and generalize the original two types of sums studied by Bordelles-Dai-Heyman-Pan-Shparlinski. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 50 条
  • [41] On the evaluation of an integral involving the Whittaker W function
    Polunchenko, Aleksey S.
    Pepelyshev, Andrey
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 383
  • [42] A FINITE INTEGRAL INVOLVING H-FUNCTION
    GOYAL, GK
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 1969, 39 : 201 - &
  • [43] Indefinite integrals involving the exponential integral function
    Conway, John T.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (01) : 1 - 15
  • [44] INTEGRAL INEQUALITIES INVOLVING A FUNCTION AND ITS DERIVATIVE
    BEESACK, PR
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (07): : 705 - &
  • [45] Arithmetic properties of the sum of the first n values of the Euler function
    Balasubramanian, R.
    Luca, Florian
    Ralaivaosaona, Dimbinaina
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2015, 21 (01): : 9 - 17
  • [46] An integral involving the elliptic cylinder function.
    Varma, RS
    PHILOSOPHICAL MAGAZINE, 1931, 12 (76): : 280 - 282
  • [47] Finite Integral Formulas Involving Aleph Function
    Kumar, Dinesh
    Saxena, R. K.
    Ram, Jeta
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (01): : 177 - 193
  • [48] On a Definite Integral of the Fractional Part Function
    Vajjha, Koundinya
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2012, 17 (05): : 493 - 496
  • [49] On a definite integral of the fractional part function
    Koundinya Vajjha
    Resonance, 2012, 17 (5) : 493 - 496
  • [50] Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52
    Ntienjem, Ebenezer
    OPEN MATHEMATICS, 2017, 15 : 446 - 458