On a sum involving small arithmetic function and the integral part function

被引:1
|
作者
Li, Jiamin [1 ]
Ma, Jing [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic formula; Multiple exponential sums; Mobius transformation; Integral part function;
D O I
10.1016/j.jnt.2022.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a "small" arithmetic function in the sense that f = g *1 and g(n) << n-j, where j is a fixed non-negative number. In this paper, we study the sum Sigma(n <= x) f([x/n])/[x/n](k) as x -> infinity, where [center dot] denotes the integral part function and k is a fixed non-negative number. Our results generalize the very recent work of Stucky, also combine and generalize the original two types of sums studied by Bordelles-Dai-Heyman-Pan-Shparlinski. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 50 条
  • [21] A lattice sum involving the cosine function
    Boysal, Arzu
    Ecevit, Fatih
    Yildirim, Cem Yalcin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (01) : 134 - 160
  • [22] On a sum involving the Euler totient function
    Wu, J.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (04): : 536 - 541
  • [23] A SUM INVOLVING THE ZETA-FUNCTION
    GAGOLA, SM
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (09): : 845 - 845
  • [24] CONVEXITY OF THE INTEGRAL ARITHMETIC MEAN OF A CONVEX FUNCTION
    Zhang, X. M.
    Chu, Y. M.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (03) : 1061 - 1068
  • [25] ON AN INTEGRAL INVOLVING I-FUNCTION
    D'Souza, Vilma
    Kurumujji, Shantha Kumari
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (01): : 207 - 212
  • [26] ON EVALUATION OF AN INTEGRAL INVOLVING KUMMERS FUNCTION
    DESHPANDE, SM
    BULLETIN OF THE CALCUTTA MATHEMATICAL SOCIETY, 1968, 60 (1-2): : 11 - +
  • [27] AN INTEGRAL EQUATION INVOLVING WHITTAKER FUNCTION
    SRIVASTA.HM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (05): : 811 - &
  • [28] ON INTEGRAL EQUATIONS INVOLVING WHITTAKERS FUNCTION
    SRIVASTAVA, KN
    PROCEEDINGS OF THE GLASGOW MATHEMATICAL ASSOCIATION, 1966, 7 : 125 - +
  • [29] AN INTEGRAL INVOLVING G-FUNCTION
    SHARMA, BL
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1965, 79 (02): : 113 - &
  • [30] On power values of sum of divisors function in arithmetic progressions
    Somu, Sai Teja
    Mishra, Vidyanshu
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (01): : 335 - 340