Almost Ricci-Yamabe solitons on Almost Kenmotsu manifolds

被引:1
|
作者
Khatri, Mohan [1 ]
Singh, Jay Prakash [1 ]
机构
[1] Mizoram Univ, Dept Math & Comp Sci, Aizawl 796004, Mizoram, India
关键词
Almost Ricci-Yamabe soliton; Kenmotsu manifold; almost Kenmotsu manifold; Ricci soliton; Yamabe soliton; GRADIENT RICCI;
D O I
10.1142/S179355712350136X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper examines almost Kenmotsu manifolds (briefly, AKMs) endowed with the almost Ricci-Yamabe solitons (ARYSs) and gradient ARYSs. The condition for an AKM with ARYS to be eta-Einstein is established. We also show that an ARYS on Kenmotsu manifold becomes a Ricci-Yamabe soliton under certain restrictions. In this series, it is proven that a (2n+1)-dimensional (K, mu)'-AKM equipped with a gradient ARYS is either locally isometric to Hn+1(-4) x R-n or the Reeb vector field and the soliton vector field are codirectional. The properties of three-dimensional non-Kenmotsu AKMs endowed with a gradient ARYS are studied.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Isometries on almost Ricci–Yamabe solitons
    Mohan Khatri
    C. Zosangzuala
    Jay Prakash Singh
    Arabian Journal of Mathematics, 2023, 12 : 127 - 138
  • [42] Geometric characterizations of almost Ricci-Bourguignon solitons on Kenmotsu manifolds
    Prakasha, D. G.
    Amruthalakshmi, M. R.
    Suh, Young Jin
    FILOMAT, 2024, 38 (03) : 861 - 871
  • [43] Almost Pseudo Symmetric Kahler Manifolds Admitting Conformal Ricci-Yamabe Metric
    Yadav, Sunil Kumar
    Haseeb, Abdul
    Jamal, Nargis
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [44] RICCI ρ-SOLITONS ON 3-DIMENSIONAL η-EINSTEIN ALMOST KENMOTSU MANIFOLDS
    Azami, Shahroud
    Fasihi-Ramandi, Ghodratallah
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (02): : 613 - 623
  • [45] RICCI SOLITONS ON THREE-DIMENSIONAL η-EINSTEIN ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    Liu, Ximin
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 91 - 100
  • [46] Riemannian manifolds in three dimensions and ∗- η-Ricci-Yamabe solitons
    Nagaraja, H. G.
    Pavithra, R. C.
    Sangeetha, M.
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2024, 17 (04): : 181 - 193
  • [47] Conformal Ricci-Yamabe solitons on warped product manifolds
    Singh, Jay Prakash
    Sumlalsanga, Robert
    FILOMAT, 2024, 38 (11) : 3791 - 3802
  • [48] Riemannian 3-manifolds and Ricci-Yamabe solitons
    Haseeb, Abdul
    Chaubey, Sudhakar K.
    Khan, Meraj Ali
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (01)
  • [49] Curvature properties of α-cosymplectic manifolds with ∗-η-Ricci-Yamabe solitons
    Vandana
    Budhiraja, Rajeev
    Diop, Aliya Naaz Siddiqui
    CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (01): : 91 - 105
  • [50] Gradient Ricci-Yamabe solitons on warped product manifolds
    Karaca, Fatma
    FILOMAT, 2023, 37 (07) : 2199 - 2207