Almost Ricci-Yamabe solitons on Almost Kenmotsu manifolds

被引:1
|
作者
Khatri, Mohan [1 ]
Singh, Jay Prakash [1 ]
机构
[1] Mizoram Univ, Dept Math & Comp Sci, Aizawl 796004, Mizoram, India
关键词
Almost Ricci-Yamabe soliton; Kenmotsu manifold; almost Kenmotsu manifold; Ricci soliton; Yamabe soliton; GRADIENT RICCI;
D O I
10.1142/S179355712350136X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper examines almost Kenmotsu manifolds (briefly, AKMs) endowed with the almost Ricci-Yamabe solitons (ARYSs) and gradient ARYSs. The condition for an AKM with ARYS to be eta-Einstein is established. We also show that an ARYS on Kenmotsu manifold becomes a Ricci-Yamabe soliton under certain restrictions. In this series, it is proven that a (2n+1)-dimensional (K, mu)'-AKM equipped with a gradient ARYS is either locally isometric to Hn+1(-4) x R-n or the Reeb vector field and the soliton vector field are codirectional. The properties of three-dimensional non-Kenmotsu AKMs endowed with a gradient ARYS are studied.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] k-ALMOST YAMABE SOLITONS ON KENMOTSU MANIFOLDS
    De, Krishnendu
    De, Uday Chand
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (01): : 115 - 122
  • [22] ?-Conformally Flat LP-Kenmotsu Manifolds and Ricci-Yamabe Solitons
    Haseeb, Abdul
    Bilal, Mohd
    Chaubey, Sudhakar K.
    Ahmadini, Abdullah Ali H.
    MATHEMATICS, 2023, 11 (01)
  • [23] ( α,β )- TYPE ALMOST η-RICCI-YAMABE SOLITONS IN PERFECT FLUID SPACETIME
    Pandey, S.
    Mert, T.
    Atceken, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2024, 93 (03): : 171 - 183
  • [24] GRADIENT RICCI ALMOST SOLITONS ON TWO CLASSES OF ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (05) : 1101 - 1114
  • [25] h-Almost Ricci-Yamabe Solitons in Paracontact Geometry
    De, Uday Chand
    Khan, Mohammad Nazrul Islam
    Sardar, Arpan
    MATHEMATICS, 2022, 10 (18)
  • [26] Ricci almost solitons on Concircular Ricci pseudosymmetric β-Kenmotsu manifolds
    Hui, Shyamal Kumar
    Chakraborty, Debabrata
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (03): : 579 - 587
  • [27] On *-Conformal Ricci Solitons on a Class of Almost Kenmotsu Manifolds
    Majhi, Pradip
    Dey, Dibakar
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 781 - 790
  • [28] Ricci solitons on almost Kenmotsu 3-manifolds
    Wang, Yaning
    OPEN MATHEMATICS, 2017, 15 : 1236 - 1243
  • [29] A study of conformal almost Ricci solitons on Kenmotsu manifolds
    Sarkar, Sumanjit
    Dey, Santu
    Bhattacharyya, Arindam
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (04)
  • [30] A Note on LP-Kenmotsu Manifolds Admitting Conformal Ricci-Yamabe Solitons
    Ahmad, Mobin
    Gazala, Maha Atif
    Al-Shabrawi, Maha Atif
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21