Deep Reinforcement Learning for Resource Allocation in Blockchain-based Federated Learning

被引:2
|
作者
Dai, Yueyue [1 ]
Yang, Huijiong [2 ]
Yang, Huiran [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Cyber Sci & Engn, Res Ctr Mobile Commun 6G, Wuhan, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
blockchain; federated learning; resource allocation; deep reinforcement Learning;
D O I
10.1109/ICC45041.2023.10279529
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
With the development of artificial intelligence, more and more applications rely on a large amount of high-quality data. Due to data island and security concerns, most of data is scattered on various devices and difficult to obtain. Federated learning (FL) is a promising paradigm to allow distributed devices cooperating to train a shared model without sharing raw data. However, the traditional FL is easy to be attacked because of single-point failure and it cannot avoid devices uploading fake or low-quality model updates. To this end, blockchain is integrated into FL to establish a secure model training ecosystem by maintaining an immutably distributed ledger. However, different data quality of raw data, diverse energy resources of devices, and different trust degree of devices make it challenging for blockchain-enabled FL efficient and reliable. Therefore, in this paper, we design a fine-grained resource allocation scheme for blockchain-enabled FL with considering the credit of devices, data quality, and energy resources. We first propose a credit-based blockchain-enabled FL to jointly execute FL training and blockchain establishment. Then we formulate the resource allocation problem with considering credit, data quality, precision, latency, and energy resources. A deep-reinforcement learning based algorithm is designed to solve the problem, and BlockSim is used to build the blockchain-enabled FL platform. Simulation results demonstrate the effectiveness of our proposed scheme on precision, latency and energy consumption, compared with traditional blockchain-enabled FL.
引用
收藏
页码:179 / 184
页数:6
相关论文
共 50 条
  • [31] LFL-COBC: Lightweight Federated Learning on Blockchain-Based Device Contribution Allocation
    Li, Qiaoyang
    Sun, Yanan
    Gao, Ke
    Xi, Ning
    Zhou, Xiaolin
    Wang, Mingyan
    Fan, Kefeng
    ELECTRONICS, 2024, 13 (22)
  • [32] Joint Multi-UAV Deployment and Resource Allocation based on Personalized Federated Deep Reinforcement Learning
    Xu, Xinyi
    Feng, Gang
    Qin, Shuang
    Liu, Yijing
    Sun, Yao
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5677 - 5682
  • [33] Blockchain-Based Swarm Learning for the Mitigation of Gradient Leakage in Federated Learning
    Madni, Hussain Ahmad
    Umer, Rao Muhammad
    Foresti, Gian Luca
    IEEE ACCESS, 2023, 11 : 16549 - 16556
  • [34] Blockchain-Based Federated Learning: A Survey and New Perspectives
    Ning, Weiguang
    Zhu, Yingjuan
    Song, Caixia
    Li, Hongxia
    Zhu, Lihui
    Xie, Jinbao
    Chen, Tianyu
    Xu, Tong
    Xu, Xi
    Gao, Jiwei
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [35] FLoBC: A Decentralized Blockchain-Based Federated Learning Framework
    Ghanem, Mohamed
    Dawoud, Fadi
    Gamal, Habiba
    Soliman, Eslam
    El-Batt, Tamer
    El-Batt, Tamer
    2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA), 2022, : 85 - 92
  • [36] Blockchain-Based Distributed Federated Learning in Smart Grid
    Antal, Marcel
    Mihailescu, Vlad
    Cioara, Tudor
    Anghel, Ionut
    MATHEMATICS, 2022, 10 (23)
  • [37] Federated Deep Reinforcement Learning for Multimedia Task Offloading and Resource Allocation in MEC Networks
    Zhang, Rongqi
    Pan, Chunyun
    Wang, Yafei
    Yao, Yuanyuan
    Li, Xuehua
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2024, E107B (06) : 446 - 457
  • [38] Blockchain-Based Architectural Framework for Vertical Federated Learning
    钱辰
    朱雯晶
    JournalofDonghuaUniversity(EnglishEdition), 2022, 39 (03) : 211 - 219
  • [39] Federated learning with blockchain-based model aggregation and incentives
    Cherukuri R.V.
    Lavanya Devi G.
    Ramesh N.
    International Journal of Computers and Applications, 2024, 46 (06) : 407 - 417
  • [40] A Survey on Blockchain-Based Federated Learning and Data Privacy
    Chhetri, Bipin
    Gopali, Saroj
    Olapojoye, Rukayat
    Dehbashi, Samin
    Namin, Akhar Siami
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 1311 - 1318