Automatic reinforcement for robust model-free neurocontrol of robots without persistent excitation

被引:0
|
作者
Pantoja-Garcia, Luis [1 ]
Parra-Vega, Vicente [1 ,3 ]
Garcia-Rodriguez, Rodolfo [2 ]
机构
[1] Ctr Res & Adv Studies, Robot & Adv Mfg, Saltillo, Mexico
[2] Univ Politecn Metropolitana Hidalgo, Aeronaut Engn Dept, Postgrad Program Aerosp Engn, Tolcayuca, Mexico
[3] Ave Ind Met 1062, Ramos Arizpe 25903, Mexico
关键词
automatic reinforced learning; model-free control; neurocontrol; persistent excitation; robot manipulators; TRACKING CONTROL; ADAPTIVE-CONTROL; MANIPULATOR CONTROL; NONLINEAR-SYSTEMS; NEURAL-NETWORKS; APPROXIMATION; FEEDBACK; CONVERGENCE;
D O I
10.1002/acs.3697
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model-based adaptive control suffers over parametrization from the many adaptive parameters compared to the order of system dynamics, leading to sluggish tracking with a poor adaptation transient without robustness. Likewise, adaptive model-free neurocontrol that relies on the Stone-Weierstrass theorem also suffers from similar problems in addition to over-fitting to approximate inverse dynamics. This article proposes a novel reinforced adaptive mechanism to guarantee a transient and robustness for the model-free adaptive control of nonlinear Lagrangian systems. Inspired by the symbiosis of Actor-Critic (AC) architecture and integral sliding modes, the reinforced stage neural network, analogous to the critic, injects excitation signals to reinforce the parametric learning of the adaptive stage neural network, analogous to the actor to improve the approximation of inverse dynamics. The underlying integral sliding surface error drives improved learning onto a low-dimensional invariant manifold to guarantee local exponential convergence of tracking errors. Lyapunov stability substantiates the robustness with an improved transient response. Our proposal stands for a hybrid approach between AC and neurocontrol, where the reinforced stage does not require a value function nor reward to provide automatic reinforcement to the adaptive stage parametric adaptation. Dynamic simulations are presented for a nonlinear robot manipulator under different conditions.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 50 条
  • [31] Counterfactual Credit Assignment in Model-Free Reinforcement Learning
    Mesnard, Thomas
    Weber, Theophane
    Viola, Fabio
    Thakoor, Shantanu
    Saade, Alaa
    Harutyunyan, Anna
    Dabney, Will
    Stepleton, Tom
    Heess, Nicolas
    Guez, Arthur
    Moulines, Eric
    Hutter, Marcus
    Buesing, Lars
    Munos, Remi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [32] Driving in Dense Traffic with Model-Free Reinforcement Learning
    Saxena, Dhruv Mauria
    Bae, Sangjae
    Nakhaei, Alireza
    Fujimura, Kikuo
    Likhachev, Maxim
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 5385 - 5392
  • [33] Model-Free Reinforcement Learning with Continuous Action in Practice
    Degris, Thomas
    Pilarski, Patrick M.
    Sutton, Richard S.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 2177 - 2182
  • [34] Learning Representations in Model-Free Hierarchical Reinforcement Learning
    Rafati, Jacob
    Noelle, David C.
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 10009 - 10010
  • [35] Covariance matrix adaptation for model-free reinforcement learning
    Adaptation de la matrice de covariance pour l'apprentissage par renforcement direct
    2013, Lavoisier, 14 rue de Provigny, Cachan Cedex, F-94236, France (27)
  • [36] Robotic Table Tennis with Model-Free Reinforcement Learning
    Gao, Wenbo
    Graesser, Laura
    Choromanski, Krzysztof
    Song, Xingyou
    Lazic, Nevena
    Sanketi, Pannag
    Sindhwani, Vikas
    Jaitly, Navdeep
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 5556 - 5563
  • [37] MODEL-FREE ONLINE REINFORCEMENT LEARNING OF A ROBOTIC MANIPULATOR
    Sweafford, Jerry, Jr.
    Fahimi, Farbod
    MECHATRONIC SYSTEMS AND CONTROL, 2019, 47 (03): : 136 - 143
  • [38] A NEW ADAPTIVE LAW FOR ROBUST ADAPTATION WITHOUT PERSISTENT EXCITATION
    NARENDRA, KS
    ANNASWAMY, AM
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (02) : 134 - 145
  • [39] A Model-Free Approach to Vibration Suppression for Intrinsically Elastic Robots
    Petit, Florian
    Ott, Christian
    Albu-Schaeffer, Alin
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 2176 - 2182
  • [40] Model-free Joint Torque Control Strategy for Hydraulic Robots
    Lee, Woongyong
    Kim, Min Jun
    Chung, Wan Kyun
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 2408 - 2415