Automatic reinforcement for robust model-free neurocontrol of robots without persistent excitation

被引:0
|
作者
Pantoja-Garcia, Luis [1 ]
Parra-Vega, Vicente [1 ,3 ]
Garcia-Rodriguez, Rodolfo [2 ]
机构
[1] Ctr Res & Adv Studies, Robot & Adv Mfg, Saltillo, Mexico
[2] Univ Politecn Metropolitana Hidalgo, Aeronaut Engn Dept, Postgrad Program Aerosp Engn, Tolcayuca, Mexico
[3] Ave Ind Met 1062, Ramos Arizpe 25903, Mexico
关键词
automatic reinforced learning; model-free control; neurocontrol; persistent excitation; robot manipulators; TRACKING CONTROL; ADAPTIVE-CONTROL; MANIPULATOR CONTROL; NONLINEAR-SYSTEMS; NEURAL-NETWORKS; APPROXIMATION; FEEDBACK; CONVERGENCE;
D O I
10.1002/acs.3697
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model-based adaptive control suffers over parametrization from the many adaptive parameters compared to the order of system dynamics, leading to sluggish tracking with a poor adaptation transient without robustness. Likewise, adaptive model-free neurocontrol that relies on the Stone-Weierstrass theorem also suffers from similar problems in addition to over-fitting to approximate inverse dynamics. This article proposes a novel reinforced adaptive mechanism to guarantee a transient and robustness for the model-free adaptive control of nonlinear Lagrangian systems. Inspired by the symbiosis of Actor-Critic (AC) architecture and integral sliding modes, the reinforced stage neural network, analogous to the critic, injects excitation signals to reinforce the parametric learning of the adaptive stage neural network, analogous to the actor to improve the approximation of inverse dynamics. The underlying integral sliding surface error drives improved learning onto a low-dimensional invariant manifold to guarantee local exponential convergence of tracking errors. Lyapunov stability substantiates the robustness with an improved transient response. Our proposal stands for a hybrid approach between AC and neurocontrol, where the reinforced stage does not require a value function nor reward to provide automatic reinforcement to the adaptive stage parametric adaptation. Dynamic simulations are presented for a nonlinear robot manipulator under different conditions.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 50 条
  • [21] On Robust Model-Free Reduced-Dimensional Reinforcement Learning Control for Singularly Perturbed Systems
    Mukherjee, Sayak
    Bai, He
    Chakrabortty, Aranya
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 3914 - 3919
  • [22] Model-free regulation of multilink smart materials robots
    Ge, SS
    Lee, TH
    Wang, ZP
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2001, 6 (03) : 346 - 351
  • [23] Adaptive model-free disturbance rejection for continuum robots
    Yilmaz, Cemal Tugrul
    Watson, Connor
    Morimoto, Tania K.
    Krstic, Miroslav
    AUTOMATICA, 2025, 171
  • [24] Robust Model-Free Multiclass Probability Estimation
    Wu, Yichao
    Zhang, Hao Helen
    Liu, Yufeng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 424 - 436
  • [25] Improving Optimistic Exploration in Model-Free Reinforcement Learning
    Grzes, Marek
    Kudenko, Daniel
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, 2009, 5495 : 360 - 369
  • [26] Model-Free Preference-Based Reinforcement Learning
    Wirth, Christian
    Fuernkranz, Johannes
    Neumann, Gerhard
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2222 - 2228
  • [27] Constrained model-free reinforcement learning for process optimization
    Pan, Elton
    Petsagkourakis, Panagiotis
    Mowbray, Max
    Zhang, Dongda
    del Rio-Chanona, Ehecatl Antonio
    COMPUTERS & CHEMICAL ENGINEERING, 2021, 154
  • [28] Model-Free μ Synthesis via Adversarial Reinforcement Learning
    Keivan, Darioush
    Havens, Aaron
    Seiler, Peter
    Dullerud, Geir
    Hu, Bin
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3335 - 3341
  • [29] An adaptive clustering method for model-free reinforcement learning
    Matt, A
    Regensburger, G
    INMIC 2004: 8TH INTERNATIONAL MULTITOPIC CONFERENCE, PROCEEDINGS, 2004, : 362 - 367
  • [30] Model-Free Reinforcement Learning for Mean Field Games
    Mishra, Rajesh
    Vasal, Deepanshu
    Vishwanath, Sriram
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (04): : 2141 - 2151