Evaluation of Machine Learning Algorithms in Network-Based Intrusion Detection Using Progressive Dataset

被引:5
|
作者
Chua, Tuan-Hong [1 ]
Salam, Iftekhar [1 ]
机构
[1] Xiamen Univ Malaysia, Sch Comp & Data Sci, Sepang 43900, Malaysia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 06期
关键词
intrusion detection; machine learning; deep learning; cybersecurity; DETECTION SYSTEM;
D O I
10.3390/sym15061251
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cybersecurity has become one of the focuses of organisations. The number of cyberattacks keeps increasing as Internet usage continues to grow. As new types of cyberattacks continue to emerge, researchers focus on developing machine learning (ML)-based intrusion detection systems (IDS) to detect zero-day attacks. They usually remove some or all attack samples from the training dataset and only include them in the testing dataset when evaluating the performance. This method may detect unknown attacks; however, it does not reflect the long-term performance of the IDS as it only shows the changes in the type of attacks. In this work, we focused on evaluating the long-term performance of ML-based IDS. To achieve this goal, we proposed evaluating the ML-based IDS using a dataset created later than the training dataset. The proposed method can better assess the long-term performance as the testing dataset reflects the changes in the attack type and network infrastructure changes over time. We have implemented six of the most popular ML models, including decision tree (DT), random forest (RF), support vector machine (SVM), naive Bayes (NB), artificial neural network (ANN), and deep neural network (DNN). These models are trained and tested with a pair of datasets with symmetrical classes. Our experiments using the CIC-IDS2017 and the CSE-CIC-IDS2018 datasets show that SVM and ANN are most resistant to overfitting. Our experiments also indicate that DT and RF suffer the most from overfitting, although they perform well on the training dataset. On the other hand, our experiments using the LUFlow dataset have shown that all models can perform well when the difference between the training and testing datasets is small.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] Network-based intrusion detection using Adaboost algorithm
    Hu, W
    Hu, WM
    2005 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, PROCEEDINGS, 2005, : 712 - 717
  • [32] Intrusion Detection and Identification Using Tree-Based Machine Learning Algorithms on DCS Network in the Oil Refinery
    Kim, Kyoung Ho
    Kwak, Byung Il
    Han, Mee Lan
    Kim, Huy Kang
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (06) : 4673 - 4682
  • [33] A Comprehensive Analysis of Accuracies of Machine Learning Algorithms for Network Intrusion Detection
    Das, Anurag
    Ajila, Samuel A.
    Lung, Chung-Horng
    MACHINE LEARNING FOR NETWORKING (MLN 2019), 2020, 12081 : 40 - 57
  • [34] Network Intrusion Detection using Machine Learning Approaches
    Hossain, Zakir
    Sourov, Md Mahmudur Rahman
    Khan, Musharrat
    Rahman, Parves
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 303 - 307
  • [35] Ensemble-Based Online Machine Learning Algorithms for Network Intrusion Detection Systems Using Streaming Data
    Martindale, Nathan
    Ismail, Muhammad
    Talbert, Douglas A.
    INFORMATION, 2020, 11 (06)
  • [36] Network Intrusion Detection Using Machine Learning Techniques
    Almutairi, Yasmeen
    Alhazmi, Bader
    Munshi, Amr
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2022, 16 (03) : 193 - 206
  • [37] Intrusion Detection System using Aggregation of Machine Learning Algorithms
    Arivarasan, K.
    Obaidat, Mohammad S.
    2022 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS, CITS, 2022, : 123 - 130
  • [38] A Survey on Intrusion Detection System Using Machine Learning Algorithms
    Gulghane, Shital
    Shingate, Vishal
    Bondgulwar, Shivani
    Awari, Gaurav
    Sagar, Parth
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 670 - 675
  • [39] Network Intrusion Detection using Machine Learning Approaches
    Hossain, Zakir
    Sourov, Md Mahmudur Rahman
    Khan, Musharrat
    Rahman, Parves
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 438 - 442
  • [40] Network Intrusion Detection using Hybrid Machine Learning
    Chuang, Po-Jen
    Li, Si-Han
    2019 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY), 2019, : 289 - 293