Learning parallel and hierarchical mechanisms for edge detection

被引:0
|
作者
Zhou, Ling [1 ]
Lin, Chuan [1 ,2 ,3 ]
Pang, Xintao [1 ,2 ,3 ]
Yang, Hao [2 ,3 ]
Pan, Yongcai [2 ,3 ]
Zhang, Yuwei [2 ,3 ]
机构
[1] Hechi Univ, Educ Dept Guangxi Zhuang Autonomous Reg, Key Lab AI & Informat Proc, Yizhou, Peoples R China
[2] Guangxi Univ Sci & Technol, Sch Automat, Liuzhou, Peoples R China
[3] Guangxi Univ Sci & Technol, Guangxi Key Lab Automobile Components & Vehicle Te, Liuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
edge detection; convolutional neural network; parallel processing mechanism; hierarchical processing mechanism; lightweight methods; CONTOUR-DETECTION; RECEPTIVE-FIELDS; COLOR;
D O I
10.3389/fnins.2023.1194713
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Edge detection is one of the fundamental components of advanced computer vision tasks, and it is essential to preserve computational resources while ensuring a certain level of performance. In this paper, we propose a lightweight edge detection network called the Parallel and Hierarchical Network (PHNet), which draws inspiration from the parallel processing and hierarchical processing mechanisms of visual information in the visual cortex neurons and is implemented via a convolutional neural network (CNN). Specifically, we designed an encoding network with parallel and hierarchical processing based on the visual information transmission pathway of the "retina-LGN-V1" and meticulously modeled the receptive fields of the cells involved in the pathway. Empirical evaluation demonstrates that, despite a minimal parameter count of only 0.2 M, the proposed model achieves a remarkable ODS score of 0.781 on the BSDS500 dataset and ODS score of 0.863 on the MBDD dataset. These results underscore the efficacy of the proposed network in attaining superior edge detection performance at a low computational cost. Moreover, we believe that this study, which combines computational vision and biological vision, can provide new insights into edge detection model research.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Hierarchical Federated Edge Learning With Adaptive Clustering in Internet of Things
    Tian, Yuqing
    Wang, Zhongyu
    Zhang, Zhaoyang
    Jin, Richeng
    Shan, Hangguan
    Wang, Wei
    Quek, Tony Q. S.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (21): : 34108 - 34122
  • [42] Hierarchical Federated Learning for Edge Intelligence through Average Consensus
    Menegatti, Danilo
    Manfredi, Sabato
    Pietrabissa, Antonio
    Poli, Cecilia
    Giuseppi, Alessandro
    IFAC PAPERSONLINE, 2023, 56 (02): : 862 - 868
  • [43] Federated Learning as a Service for Hierarchical Edge Networks with Heterogeneous Models
    Gao, Wentao
    Tavallaie, Omid
    Chen, Shuaijun
    Zomaya, Albert
    SERVICE-ORIENTED COMPUTING, ICSOC 2024, PT I, 2025, 15404 : 85 - 99
  • [44] Hierarchical Broadcast Coding: Expediting Distributed Learning at the Wireless Edge
    Han, Dong-Jun
    Sohn, Jy-Yong
    Moon, Jaekyun
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (04) : 2266 - 2281
  • [45] Joint Scheduling and Resource Allocation for Hierarchical Federated Edge Learning
    Wen, Wanli
    Chen, Zihan
    Yang, Howard H.
    Xia, Wenchao
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (08) : 5857 - 5872
  • [46] Over-the-Air Federated Edge Learning With Hierarchical Clustering
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 17856 - 17871
  • [47] Optimizing Model Dissemination for Hierarchical Clustering Learning in Edge Computing
    Zhang, Long
    Feng, Gang
    Qin, Zheng
    Li, Xiaoqian
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (06) : 2397 - 2411
  • [48] SEHSNet: Stage Enhancement and Hierarchical Supervision Network for edge detection
    Zhou, Jianhang
    Zhao, Hongwei
    Sun, Mingsi
    VISUAL COMPUTER, 2024, 40 (10): : 7439 - 7456
  • [49] Hierarchical edge-aware network for defocus blur detection
    Zijian Zhao
    Hang Yang
    Huiyuan Luo
    Complex & Intelligent Systems, 2022, 8 : 4265 - 4276
  • [50] Hierarchical edge-aware network for defocus blur detection
    Zhao, Zijian
    Yang, Hang
    Luo, Huiyuan
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (05) : 4265 - 4276