Learning parallel and hierarchical mechanisms for edge detection

被引:0
|
作者
Zhou, Ling [1 ]
Lin, Chuan [1 ,2 ,3 ]
Pang, Xintao [1 ,2 ,3 ]
Yang, Hao [2 ,3 ]
Pan, Yongcai [2 ,3 ]
Zhang, Yuwei [2 ,3 ]
机构
[1] Hechi Univ, Educ Dept Guangxi Zhuang Autonomous Reg, Key Lab AI & Informat Proc, Yizhou, Peoples R China
[2] Guangxi Univ Sci & Technol, Sch Automat, Liuzhou, Peoples R China
[3] Guangxi Univ Sci & Technol, Guangxi Key Lab Automobile Components & Vehicle Te, Liuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
edge detection; convolutional neural network; parallel processing mechanism; hierarchical processing mechanism; lightweight methods; CONTOUR-DETECTION; RECEPTIVE-FIELDS; COLOR;
D O I
10.3389/fnins.2023.1194713
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Edge detection is one of the fundamental components of advanced computer vision tasks, and it is essential to preserve computational resources while ensuring a certain level of performance. In this paper, we propose a lightweight edge detection network called the Parallel and Hierarchical Network (PHNet), which draws inspiration from the parallel processing and hierarchical processing mechanisms of visual information in the visual cortex neurons and is implemented via a convolutional neural network (CNN). Specifically, we designed an encoding network with parallel and hierarchical processing based on the visual information transmission pathway of the "retina-LGN-V1" and meticulously modeled the receptive fields of the cells involved in the pathway. Empirical evaluation demonstrates that, despite a minimal parameter count of only 0.2 M, the proposed model achieves a remarkable ODS score of 0.781 on the BSDS500 dataset and ODS score of 0.863 on the MBDD dataset. These results underscore the efficacy of the proposed network in attaining superior edge detection performance at a low computational cost. Moreover, we believe that this study, which combines computational vision and biological vision, can provide new insights into edge detection model research.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Participant Selection for Hierarchical Federated Learning in Edge Clouds
    Wei, Xinliang
    Liu, Jiyao
    Shi, Xinghua
    Wang, Yu
    2022 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, ARCHITECTURE AND STORAGE (NAS), 2022, : 65 - 72
  • [22] Hierarchical Over-the-Air Federated Edge Learning
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3376 - 3381
  • [23] Dynamic Edge Association in Hierarchical Federated Learning Networks
    Lim, Wei Yang Bryan
    Ng, Jer Shyuan
    Xiong, Zehui
    Garg, Sahil
    Zhang, Yang
    Niyato, Dusit
    Miao, Chunyan
    2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1124 - 1131
  • [24] The Case for Hierarchical Deep Learning Inference at the Network Edge
    Al-Atat, Ghina
    Fresa, Andrea
    Behera, Adarsh Prasad
    Moothedath, Vishnu Narayanan
    Gross, James
    Champati, Jaya Prakash
    PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON NETWORKED AI SYSTEMS, NETAISYS 2023, 2023, : 13 - 18
  • [25] Hierarchical and Distributed Machine Learning Inference Beyond the Edge
    Thomas, Anthony
    Guo, Yunhui
    Kim, Yeseong
    Aksanli, Baris
    Kumar, Arun
    Rosing, Tajana S.
    PROCEEDINGS OF THE 2019 IEEE 16TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC 2019), 2019, : 18 - 23
  • [26] Hierarchical Federated Learning with Edge Optimization in Constrained Networks
    Zhang, Xiaoyang
    Tham, Chen-Khong
    Wang, Wenyi
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,
  • [27] Multiscale hierarchical attention fusion network for edge detection
    Meng, Kun
    Dong, Xianyong
    Shan, Hongyuan
    Xia, Shuyin
    INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, 2023, 42 (01) : 1 - 11
  • [28] Hierarchical optimum edge detection for linear array sensors
    Ebrahim, B
    Gluzmann, A
    PROCEEDINGS OF THE IEEE SENSORS 2003, VOLS 1 AND 2, 2003, : 166 - 170
  • [29] EFFICIENT EDGE-DETECTION USING HIERARCHICAL STRUCTURES
    TAN, CL
    LOH, SKK
    PATTERN RECOGNITION, 1993, 26 (01) : 127 - 135
  • [30] Neural mechanisms for learning hierarchical structures of information
    Fukai, Tomoki
    Asabuki, Toshitake
    Haga, Tatsuya
    CURRENT OPINION IN NEUROBIOLOGY, 2021, 70 : 145 - 153