NUMERICAL SIMULATION OF PROTON BACKSCATTERING SPECTRA IN GEANT4 TOOLKIT

被引:0
|
作者
Lingis, D. [1 ]
Gaspariunas, M. [1 ]
Kovalevskij, V. [1 ]
Plukis, A. [1 ]
Remeikis, V. [1 ]
机构
[1] Ctr Phys Sci & Technol, Savanoriu 231, LT-02300 Vilnius, Lithuania
来源
LITHUANIAN JOURNAL OF PHYSICS | 2024年 / 64卷 / 01期
关键词
Rutherford backscattering; GEANT4; simulations; backscattering spectra; protons; CHANNELING SPECTRA; THIN-FILMS; RBS; RESOLUTION; SYSTEM;
D O I
10.3952/physics.2024.64.1.5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Rutherford backscattering spectroscopy (RBS) is a widely used technique for the atomic-scale analysis of sample composition, lattice displacement and impurity profiling. RBS is based on the elastic scattering of incident charged particles by target nuclei and the subsequent detection of scattered particles. The interpretation of RBS spectra, however, poses challenges due to overlapping peaks, corresponding to scattering from different atomic species, and uncertainties from energy loss, scattering geometry and detector response. To address this, an open source simulation model based on the versatile GEANT4 simulation toolkit has been developed. The flexibility of the open source enables users to tailor the model to its specific requirements, such as the use of specific particle stopping powers, cross-sections, and physics processes. This work presents the results of the comparison between the experimental and simulated backscattering spectra in crystalline silicon, silicon carbide and silicon dioxide samples by 1-2.5 MeV energy protons, obtained in random orientation conditions. The results demonstrate the capability of the model to accurately simulate backscattering spectra in both amorphous materials and single crystals. The overall agreement between the simulated and experimental results is highly promising for future development and use in the interpretation and simulation of RBS spectra.
引用
收藏
页码:48 / 57
页数:10
相关论文
共 50 条
  • [41] PIXE Simulation With Geant4
    Pia, Maria Grazia
    Weidenspointner, Georg
    Augelli, Mauro
    Quintieri, Lina
    Saracco, Paolo
    Sudhakar, Manju
    Zoglauer, Andreas
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009, 56 (06) : 3614 - 3649
  • [42] The ALICE Geant4 Simulation
    Hrivnacova, I.
    Datskova, O.
    Gheata, A.
    Morsch, A.
    Sicking, E.
    INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2010): EVENT PROCESSING, 2011, 331
  • [43] Proton Therapy Range Verification Using Prompt Gamma Rays: A Simulation Study with the Geant4 Monte Carlo Toolkit
    Lau, A.
    Chen, Y.
    Ahmad, S.
    MEDICAL PHYSICS, 2013, 40 (06)
  • [44] Validation of Geant4 Simulation of Proton Energy Straggling: First Results
    Han, Min Cheol
    Pia, Maria Grazia
    Saracco, Paolo
    2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC), 2018,
  • [45] Geant4 simulation of interplanetary proton induced deep dielectrics charging
    Qin X.-G.
    He D.-Y.
    Yang S.-S.
    Wang J.
    Yuhang Xuebao/Journal of Astronautics, 2010, 31 (02): : 526 - 530
  • [46] Monte-Carlo Geant4 numerical simulation of experiments at 247-MeV proton microscope
    Kantsyrev, A. V.
    Skoblyakov, A. V.
    Bogdanov, A. V.
    Golubev, A. A.
    Shilkin, N. S.
    Yuriev, D. S.
    Mintsev, V. B.
    XXXII INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER (ELBRUS 2017), 2018, 946
  • [47] Validation of Geant4 Physics Models for the Simulation of the Proton Bragg Peak
    Cirrone, G. A. P.
    Cuttone, G.
    Di Rosa, F.
    Guatelli, S.
    Mascialino, B.
    Pia, M. G.
    Russo, G.
    2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 788 - 792
  • [48] Models of biological effects of radiation in the Geant4 Toolkit
    Chauvie, S.
    Francis, Z.
    Guatelli, S.
    Incerti, S.
    Mascialino, B.
    Montarou, G.
    Moretto, P.
    Nieminen, P.
    Pia, M. G.
    2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 803 - 805
  • [49] GEANT4 simulation in proton medical imaging: A transport models comparison
    Silva, R. C. L.
    Denyak, V.
    Hoff, G.
    Paschuk, S. A.
    Schelin, H. R.
    Setti, J. A. P.
    RADIATION PHYSICS AND CHEMISTRY, 2020, 172
  • [50] G4CMP: Condensed matter physics simulation using the Geant4 toolkit
    Kelsey, M. H.
    Agnese, R.
    Alam, Y. F.
    Langroudy, I. Ataee
    Azadbakht, E.
    Brandt, D.
    Bunker, R.
    Cabrera, B.
    Chang, Y. -Y.
    Coombes, H.
    Cormier, R. M.
    Diamond, M. D.
    Edwards, E. R.
    Figueroa-Feliciano, E.
    Gao, J.
    Harrington, P. M.
    Hong, Z.
    Hui, M.
    Kurinsky, N. A.
    Lawrence, R. E.
    Loer, B.
    Masten, M. G.
    Michaud, E.
    Michielin, E.
    Miller, J.
    Novati, V.
    Oblath, N. S.
    Orrell, J. L.
    Perry, W. L.
    Redl, P.
    Reynolds, T.
    Saab, T.
    Sadoulet, B.
    Serniak, K.
    Singh, J.
    Speaks, Z.
    Stanford, C.
    Stevens, J. R.
    Strube, J.
    Toback, D.
    Ullom, J. N.
    VanDevender, B. A.
    Vissers, M. R.
    Wilson, M. J.
    Wilson, J. S.
    Zatschler, B.
    Zatschler, S.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2023, 1055