Rational design and glass-forming ability prediction of bulk metallic glasses via interpretable machine learning

被引:7
|
作者
Long, Tao [1 ]
Long, Zhilin [2 ]
Peng, Zheng [3 ]
机构
[1] Xiangtan Univ, Sch Mech Engn & Mech, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Civil Engn, Xiangtan 411105, Hunan, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
CRITERION; TEMPERATURE;
D O I
10.1007/s10853-023-08528-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The prediction accuracy of current mainstream machine learning (ML) models depends on regulating many hyperparameters. In this paper, a deep forest (DF) model with a few hyperparameters and a non-excessive dependence on super parameter regulation was applied to the prediction of glass-forming ability (GFA) of bulk metallic glasses (BMGs). Compared with these of the mainstream ML models, including Support Vector Regression (SVR), random forest (RF), gradient boosted decision trees (GBDT), k-nearest neighbor (KNN), and eXtreme gradient boosting (XGBoost), the tenfold cross-validation shows that the determination coefficient (R-2) of our suggested DF model is improved by 10.4%-74.2%. Moreover, the parameter U obtained by the SHapley Additive exPlanations (SHAP) method analysis can be used to guide the design and development of BMGs. Finally, a design and development of scheme process for BMGs that meets the expected requirements is given via parameter U and the constructed DF model.
引用
收藏
页码:8833 / 8844
页数:12
相关论文
共 50 条
  • [21] Determination of glass forming ability of bulk metallic glasses based on machine learning
    Peng, Li
    Long, Zhilin
    Zhao, Mingshengzi
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 195
  • [22] Glass-Forming Ability of Bulk Metallic Glass
    Ohashi Y.
    Zairyo/Journal of the Society of Materials Science, Japan, 2023, 72 (03) : 204 - 205
  • [23] COMPOSITION DESIGN AND GLASS-FORMING ABILITY OF TI-BASED BULK METALLIC GLASSES
    Zhao, Lei
    Zhang, Zeqiang
    Zhang, Jing
    Pang, Shujie
    Ma, Chaoli
    Zhang, Tao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (15-16): : 2326 - 2331
  • [24] A thermodynamic approach to assess glass-forming ability of bulk metallic glasses
    纪秀林
    潘冶
    Transactions of Nonferrous Metals Society of China, 2009, 19 (05) : 1271 - 1279
  • [25] Evaluation of the parameters related to glass-forming ability of bulk metallic glasses
    Cai, AH
    Sun, GX
    Pan, Y
    MATERIALS & DESIGN, 2006, 27 (06) : 479 - 488
  • [26] Recent progress in quantifying glass-forming ability of bulk metallic glasses
    Lu, Z. P.
    Bei, H.
    Liu, C. T.
    INTERMETALLICS, 2007, 15 (5-6) : 618 - 624
  • [27] A new parameter to evaluate the glass-forming ability of bulk metallic glasses
    Suo, Z. Y.
    Qiu, K. Q.
    Li, Q. F.
    You, J. H.
    Ren, Y. L.
    Hu, Z. Q.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 528 (01): : 429 - 433
  • [28] A new criterion for evaluating the glass-forming ability of bulk metallic glasses
    Chen, Qingjun
    Shen, Jun
    Zhang, Deliang
    Fan, Hongbo
    Sun, Jianfei
    McCartney, D. G.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 433 (1-2): : 155 - 160
  • [29] Computational studies of the glass-forming ability of model bulk metallic glasses
    Zhang, Kai
    Wang, Minglei
    Papanikolaou, Stefanos
    Liu, Yanhui
    Schroers, Jan
    Shattuck, Mark D.
    O'Hern, Corey S.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (12):
  • [30] A thermodynamic approach to assess glass-forming ability of bulk metallic glasses
    Ji Xiu-lin
    Pan Ye
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2009, 19 (05) : 1271 - 1279