Rational design and glass-forming ability prediction of bulk metallic glasses via interpretable machine learning

被引:7
|
作者
Long, Tao [1 ]
Long, Zhilin [2 ]
Peng, Zheng [3 ]
机构
[1] Xiangtan Univ, Sch Mech Engn & Mech, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Civil Engn, Xiangtan 411105, Hunan, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
CRITERION; TEMPERATURE;
D O I
10.1007/s10853-023-08528-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The prediction accuracy of current mainstream machine learning (ML) models depends on regulating many hyperparameters. In this paper, a deep forest (DF) model with a few hyperparameters and a non-excessive dependence on super parameter regulation was applied to the prediction of glass-forming ability (GFA) of bulk metallic glasses (BMGs). Compared with these of the mainstream ML models, including Support Vector Regression (SVR), random forest (RF), gradient boosted decision trees (GBDT), k-nearest neighbor (KNN), and eXtreme gradient boosting (XGBoost), the tenfold cross-validation shows that the determination coefficient (R-2) of our suggested DF model is improved by 10.4%-74.2%. Moreover, the parameter U obtained by the SHapley Additive exPlanations (SHAP) method analysis can be used to guide the design and development of BMGs. Finally, a design and development of scheme process for BMGs that meets the expected requirements is given via parameter U and the constructed DF model.
引用
收藏
页码:8833 / 8844
页数:12
相关论文
共 50 条
  • [1] Rational design and glass-forming ability prediction of bulk metallic glasses via interpretable machine learning
    Tao Long
    Zhilin Long
    Zheng Peng
    Journal of Materials Science, 2023, 58 : 8833 - 8844
  • [2] Machine learning prediction of glass-forming ability in bulk metallic glasses
    Xiong, Jie
    Shi, San-Qiang
    Zhang, Tong-Yi
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 192
  • [3] Identifying key features for predicting glass-forming ability of bulk metallic glasses via interpretable machine learning
    Zeng, Yangchuan
    Tian, Zean
    Zheng, Quan
    Bu, Anguo
    Xie, Quan
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (19) : 8318 - 8337
  • [4] Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses
    Jie Xiong
    Tong-Yi Zhang
    San-Qiang Shi
    MRS Communications, 2019, 9 : 576 - 585
  • [5] Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses
    Xiong, Jie
    Zhang, Tong-Yi
    Shi, San-Qiang
    MRS COMMUNICATIONS, 2019, 9 (02) : 576 - 585
  • [6] Prediction of Glass Forming Ability of Bulk Metallic Glasses Using Machine Learning
    Reddy, G. Jaideep
    Kandavalli, Manjunadh
    Saboo, Tanay
    Rao, A. K. Prasada
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2021, 10 (04) : 610 - 626
  • [7] Prediction of Glass Forming Ability of Bulk Metallic Glasses Using Machine Learning
    G. Jaideep Reddy
    Manjunadh Kandavalli
    Tanay Saboo
    A. K. Prasada Rao
    Integrating Materials and Manufacturing Innovation, 2021, 10 : 610 - 626
  • [8] Notes on the glass-forming ability of bulk metallic glasses
    Liu, Jianbo
    PHYSICS TODAY, 2014, 67 (02) : 10 - 11
  • [9] Machine Learning Aided Prediction of Glass-Forming Ability of Metallic Glass
    Liu, Chengcheng
    Wang, Xuandong
    Cai, Weidong
    He, Yazhou
    Su, Hang
    PROCESSES, 2023, 11 (09)
  • [10] Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses
    Alireza Ghorbani
    Amirhossein Askari
    Mehdi Malekan
    Mahmoud Nili-Ahmadabadi
    Scientific Reports, 12