A Fixed Point Theorem in the Lebesgue Spaces of Variable Integrability Lp(<middle dot>)

被引:3
|
作者
El Amri, Amnay [1 ]
Khamsi, Mohamed Amine [2 ]
Mendez, Osvaldo D. [3 ]
机构
[1] Hassan II Univ, Fac Sci Ben Msik LAMS, Casablanca 20023, Morocco
[2] Khalifa Univ, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates
[3] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 11期
关键词
electrorheological fluid; fixed point; modular vector space; Nakano; strictly convex; uniformly convex;
D O I
10.3390/sym15111999
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We establish a fixed point property for the Lebesgue spaces with variable exponents L-p(center dot ), focusing on the scenario where the exponent closely approaches 1. The proof does not impose any additional conditions. In particular, our investigation centers on rho-non-expansive mappings defined on convex subsets of L-p(center dot ), satisfying the "condition of uniform decrease" that we define subsequently.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A fixed point theorem in locally convex spaces
    Kozlov, Vladimir
    Thim, Johan
    Turesson, Bengt Ove
    COLLECTANEA MATHEMATICA, 2010, 61 (02) : 223 - 239
  • [32] Caristi's Fixed Point Theorem and Subrahmanyam's Fixed Point Theorem in ν-Generalized Metric Spaces
    Alamri, Badriah
    Suzuki, Tomonari
    Khan, Liaqat Ali
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [33] A weighted Sobolev theorem for spatial and spherical potentials in Lebesgue spaces with variable exponents
    Vakulov, BG
    Samko, SG
    DOKLADY MATHEMATICS, 2005, 72 (01) : 487 - 490
  • [34] Rubio de Francia extrapolation theorem in variable Lebesgue spaces for Bp(•) weights
    Singh, Arun Pal
    Singh, Monika
    Jain, Pankaj
    Panchal, Rahul
    RICERCHE DI MATEMATICA, 2024, 73 (02) : 1065 - 1083
  • [35] On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent
    Kokilashvili, V
    Samko, S
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (04): : 899 - 910
  • [36] A FIXED POINT THEOREM FOR CORRESPONDENCES ON CONE METRIC SPACES
    Ge, Xun
    FIXED POINT THEORY, 2014, 15 (01): : 79 - 86
  • [37] Caristi Fixed Point Theorem in Metric Spaces with a Graph
    Alfuraidan, M. R.
    Khamsi, M. A.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [38] COMMON FIXED-POINT THEOREM FOR NESTED SPACES
    SMITHSON, RE
    PACIFIC JOURNAL OF MATHEMATICS, 1979, 82 (02) : 533 - 537
  • [39] A Schauder fixed point theorem in semilinear spaces and applications
    Agarwal, Ravi P.
    Arshad, Sadia
    O'Regan, Donal
    Lupulescu, Vasile
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [40] Vector ultrametric spaces and a fixed point theorem for correspondences
    Nourouzi, Kourosh
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2015, 7 (01): : 147 - 153