A Fixed Point Theorem in the Lebesgue Spaces of Variable Integrability Lp(<middle dot>)

被引:3
|
作者
El Amri, Amnay [1 ]
Khamsi, Mohamed Amine [2 ]
Mendez, Osvaldo D. [3 ]
机构
[1] Hassan II Univ, Fac Sci Ben Msik LAMS, Casablanca 20023, Morocco
[2] Khalifa Univ, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates
[3] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 11期
关键词
electrorheological fluid; fixed point; modular vector space; Nakano; strictly convex; uniformly convex;
D O I
10.3390/sym15111999
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We establish a fixed point property for the Lebesgue spaces with variable exponents L-p(center dot ), focusing on the scenario where the exponent closely approaches 1. The proof does not impose any additional conditions. In particular, our investigation centers on rho-non-expansive mappings defined on convex subsets of L-p(center dot ), satisfying the "condition of uniform decrease" that we define subsequently.
引用
收藏
页数:15
相关论文
共 50 条
  • [22] A FIXED POINT THEOREM IN GENERALIZED METRIC SPACES
    Kikina, Luljeta
    Kikina, Kristaq
    DEMONSTRATIO MATHEMATICA, 2013, 46 (01) : 181 - 190
  • [23] FIXED-POINT THEOREM IN METRIC SPACES
    PITTNAUER, F
    ARCHIV DER MATHEMATIK, 1975, 26 (04) : 421 - 426
  • [24] ON A FIXED-POINT THEOREM FOR METRIC SPACES
    HU, TK
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (04): : 436 - &
  • [25] A multiplicity fixed point theorem in Frechet spaces
    O'Regan, D
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (03): : 853 - 862
  • [26] A fixed point theorem in locally convex spaces
    Vladimir Kozlov
    Johan Thim
    Bengt Ove Turesson
    Collectanea mathematica, 2010, 61 : 223 - 239
  • [27] A Fixed Point Theorem in Generalized Menger Spaces
    Choudhury, Binayak S.
    Das, Krishnapada
    THAI JOURNAL OF MATHEMATICS, 2012, 10 (02): : 363 - 370
  • [28] A Note on a Fixed Point Theorem in Hilbert Spaces
    Imdad, M.
    Ali, Javid
    THAI JOURNAL OF MATHEMATICS, 2005, 3 (02): : 219 - 221
  • [29] A fixed point theorem for L 1 spaces
    Bader, U.
    Gelander, T.
    Monod, N.
    INVENTIONES MATHEMATICAE, 2012, 189 (01) : 143 - 148
  • [30] The Kakutani fixed point theorem for Roberts spaces
    Okon, T
    TOPOLOGY AND ITS APPLICATIONS, 2002, 123 (03) : 461 - 470