A Fixed Point Theorem in the Lebesgue Spaces of Variable Integrability Lp(<middle dot>)

被引:3
|
作者
El Amri, Amnay [1 ]
Khamsi, Mohamed Amine [2 ]
Mendez, Osvaldo D. [3 ]
机构
[1] Hassan II Univ, Fac Sci Ben Msik LAMS, Casablanca 20023, Morocco
[2] Khalifa Univ, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates
[3] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 11期
关键词
electrorheological fluid; fixed point; modular vector space; Nakano; strictly convex; uniformly convex;
D O I
10.3390/sym15111999
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We establish a fixed point property for the Lebesgue spaces with variable exponents L-p(center dot ), focusing on the scenario where the exponent closely approaches 1. The proof does not impose any additional conditions. In particular, our investigation centers on rho-non-expansive mappings defined on convex subsets of L-p(center dot ), satisfying the "condition of uniform decrease" that we define subsequently.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Remark on a Fixed-Point Theorem in the Lebesgue Spaces of Variable Integrability LP(.)
    Khamsi, Mohamed A.
    Mendez, Osvaldo D.
    MATHEMATICS, 2023, 11 (01)
  • [2] A THEOREM ON A FIXED POINT ON Lp SPACES
    Bourdon, Marc
    PUBLICACIONS MATEMATIQUES, 2012, 56 (02) : 375 - 392
  • [3] New Modular Fixed-Point Theorem in the Variable Exponent Spaces lp(.)
    El Amri, Amnay
    Khamsi, Mohamed A.
    MATHEMATICS, 2022, 10 (06)
  • [4] Fixed point properties and reflexivity in variable Lebesgue spaces
    Dominguez Benavides, T.
    Japon, M. A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (06)
  • [5] Ergodic theorem in variable Lebesgue spaces
    Przemysław Górka
    Periodica Mathematica Hungarica, 2016, 72 : 243 - 247
  • [6] Ergodic theorem in variable Lebesgue spaces
    Gorka, Przemyslaw
    PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (02) : 243 - 247
  • [7] Local integrability of G(<middle dot>)-superharmonic functions in Lebesgue and Musielak-Orlicz spaces
    Eddaoudi, Hicham
    Khlifi, Ismail
    Benyaiche, Allami
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (01) : 127 - 146
  • [8] Modular Uniform Convexity of Lebesgue Spaces of Variable Integrability
    Bachar, Mostafa
    Mendez, Osvaldo
    Bounkhel, Messaoud
    SYMMETRY-BASEL, 2018, 10 (12):
  • [9] INTEGRABILITY OF MAXIMAL FUNCTIONS FOR GENERALIZED LEBESGUE SPACES Lp(.)(logL)q(.)
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    POTENTIAL THEORY AND STOCHASTICS IN ALBAC: AUREL CORNEA MEMORIAL VOLUME, CONFERENCE PROCEEDINGS, 2009, : 193 - +
  • [10] Relative rearrangement and Lebesgue spaces LP(•) with variable exponent
    Fiorenza, A.
    Rakotoson, J. M.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 88 (06): : 506 - 521