Introduction to EarthCARE synthetic data using a global storm-resolvingsimulation

被引:3
|
作者
Roh, Woosub [1 ]
Satoh, Masaki [1 ]
Hashino, Tempei [2 ]
Matsugishi, Shuhei [1 ]
Nasuno, Tomoe [3 ]
Kubota, Takuji [4 ]
机构
[1] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba 2778564, Japan
[2] Kochi Univ Technol, Dept Environm Sci & Technol, Kami, Kochi 7828502, Japan
[3] Japan Agcy Marine Earth & Sci & Technol, Res Inst Global Change, Yokosuka, Kanagawa 2370061, Japan
[4] Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, Tsukuba, Ibaraki 3058505, Japan
关键词
CLOUD; MODEL; MICROPHYSICS; NICAM; SIMULATIONS; MULTISENSOR; ALGORITHMS; RADIATION;
D O I
10.5194/amt-16-3331-2023
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Pre-launch simulated satellite data are useful to develop retrieval algorithms and to facilitate the rapid release of retrieval products after launch. Here we introduce the Japanese Aerospace Exploration Agency's (JAXA) EarthCARE synthetic data based on simulations using a 3.5 kmhorizontal-mesh global storm-resolving model. Global aerosol transportsimulation results are added for aerosol retrieval developers. Syntheticdata were produced corresponding to the four EarthCARE instrument sensors,namely a 94 GHz cloud-profiling radar (CPR), a 355 nm atmospheric lidar(ATLID), a seven-channel multispectral imager (MSI), and a broadbandradiometer (BBR). JAXA EarthCARE synthetic data include a standard productwith data for two orbits and a research product with shorter frames and moredetailed instrument settings. In the research products, random errors in theCPR are considered based on the observation window, and noise in ATLIDsignals are added using a noise simulator. We consider the spectralmisalignment effect of the visible and near-infrared MSI channels based onresponse functions depending on the angle from the nadir. We introduce plansfor updating the JAXA EarthCARE synthetic data using large eddy simulationmodel data and the implementation of a three-dimensional radiation model.The JAXA EarthCARE synthetic data are available publicly.
引用
收藏
页码:3331 / 3344
页数:14
相关论文
共 50 条
  • [41] Dust/Sand Storm Initiation Diagnosis Using Empirical Data
    Bychkova, V., I
    Pripachkin, D. A.
    Rubinshtein, K. G.
    RUSSIAN METEOROLOGY AND HYDROLOGY, 2021, 46 (07) : 454 - 460
  • [42] A New Approach for Dust Storm Detection Using MODIS Data
    Amin Sarikhani
    Maryam Dehghani
    Ayoub Karimi-Jashni
    Solmaz Saadat
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2021, 45 : 963 - 969
  • [43] Dust/Sand Storm Initiation Diagnosis Using Empirical Data
    V. I. Bychkova
    D. A. Pripachkin
    K. G. Rubinshtein
    Russian Meteorology and Hydrology, 2021, 46 : 454 - 460
  • [44] A New Approach for Dust Storm Detection Using MODIS Data
    Sarikhani, Amin
    Dehghani, Maryam
    Karimi-Jashni, Ayoub
    Saadat, Solmaz
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2021, 45 (02) : 963 - 969
  • [45] Global Data Distribution Weighted Synthetic Oversampling Technique for Imbalanced Learning
    Wang, Zhenfei
    Wang, Hongju
    IEEE ACCESS, 2021, 9 : 44770 - 44783
  • [46] Global formulation of the Synthetic Storm Technique to calculate rain attenuation only from rain rate probability distributions
    Matricciani, Emilio
    2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 356 - 359
  • [47] Nonparametric Generation of Synthetic Data Using Copulas
    Restrepo, Juan P. P.
    Rivera, Juan Carlos
    Laniado, Henry
    Osorio, Pablo
    Becerra, Omar A. A.
    ELECTRONICS, 2023, 12 (07)
  • [48] Efficient ai adaption using synthetic data
    Blank A.
    Baier L.
    Kedilioglu O.
    Zhu X.
    Metzner M.
    Franke J.
    WT Werkstattstechnik, 2021, 111 (10): : 759 - 762
  • [49] Nonlinear censored regression using synthetic data
    Delecroix, Michel
    Lopez, Olivier
    Patilea, Valentin
    SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (02) : 248 - 265
  • [50] Comparing Recommender Systems using Synthetic Data
    Slokom, Manel
    12TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS), 2018, : 548 - 552