Introduction to EarthCARE synthetic data using a global storm-resolvingsimulation

被引:3
|
作者
Roh, Woosub [1 ]
Satoh, Masaki [1 ]
Hashino, Tempei [2 ]
Matsugishi, Shuhei [1 ]
Nasuno, Tomoe [3 ]
Kubota, Takuji [4 ]
机构
[1] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba 2778564, Japan
[2] Kochi Univ Technol, Dept Environm Sci & Technol, Kami, Kochi 7828502, Japan
[3] Japan Agcy Marine Earth & Sci & Technol, Res Inst Global Change, Yokosuka, Kanagawa 2370061, Japan
[4] Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, Tsukuba, Ibaraki 3058505, Japan
关键词
CLOUD; MODEL; MICROPHYSICS; NICAM; SIMULATIONS; MULTISENSOR; ALGORITHMS; RADIATION;
D O I
10.5194/amt-16-3331-2023
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Pre-launch simulated satellite data are useful to develop retrieval algorithms and to facilitate the rapid release of retrieval products after launch. Here we introduce the Japanese Aerospace Exploration Agency's (JAXA) EarthCARE synthetic data based on simulations using a 3.5 kmhorizontal-mesh global storm-resolving model. Global aerosol transportsimulation results are added for aerosol retrieval developers. Syntheticdata were produced corresponding to the four EarthCARE instrument sensors,namely a 94 GHz cloud-profiling radar (CPR), a 355 nm atmospheric lidar(ATLID), a seven-channel multispectral imager (MSI), and a broadbandradiometer (BBR). JAXA EarthCARE synthetic data include a standard productwith data for two orbits and a research product with shorter frames and moredetailed instrument settings. In the research products, random errors in theCPR are considered based on the observation window, and noise in ATLIDsignals are added using a noise simulator. We consider the spectralmisalignment effect of the visible and near-infrared MSI channels based onresponse functions depending on the angle from the nadir. We introduce plansfor updating the JAXA EarthCARE synthetic data using large eddy simulationmodel data and the implementation of a three-dimensional radiation model.The JAXA EarthCARE synthetic data are available publicly.
引用
收藏
页码:3331 / 3344
页数:14
相关论文
共 50 条
  • [31] APPLICATION OF SYNTHETIC STORM DATA TO EVALUATE SIMPLER TECHNIQUES FOR PREDICTING RAIN ATTENUATION STATISTICS
    KHEIRALLAH, HN
    SEGAL, B
    OLSEN, RL
    ANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATIONS, 1980, 35 (11-1): : 456 - 462
  • [32] Implicit Assimilation of Sparse In Situ Data for Dense & Global Storm Surge Forecasting
    Ebel, Patrick
    Victor, Brandon
    Naylor, Peter
    Meoni, Gabriele
    Serva, Federico
    Schneider, Rochelle
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW, 2024, : 471 - 480
  • [33] Simulation of cyclones using synthetic data
    Abraham, KR
    Mohanty, UC
    Dash, SK
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-EARTH AND PLANETARY SCIENCES, 1995, 104 (04): : 635 - 666
  • [34] Statistical tests on clustered global earthquake synthetic data sets
    Daub, Eric G.
    Trugman, Daniel T.
    Johnson, Paul A.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2015, 120 (08) : 5693 - 5716
  • [35] Radiative Flux Estimation from a Broadband Radiometer Using Synthetic Angular Models in the EarthCARE Mission Framework. Part I: Methodology
    Domenech, Carlos
    Lopez-Baeza, Ernesto
    Donovan, David P.
    Wehr, Tobias
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2011, 50 (05) : 974 - 993
  • [36] Radiative Flux Estimation from a Broadband Radiometer Using Synthetic Angular Models in the EarthCARE Mission Framework. Part II: Evaluation
    Domenech, Carlos
    Lopez-Baeza, Ernesto
    Donovan, David P.
    Wehr, Tobias
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2012, 51 (09) : 1714 - 1731
  • [37] Introduction to the Special Issue on Realistic Synthetic Data: Generation, Learning, Evaluation
    Ionescu, Bogdan
    Patras, Ioannis
    Muller, Henning
    Del Bimbo, Alberto
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2025, 21 (01) : 1 - 7
  • [38] An Introduction to Data Cleaning Using Internet Search Data
    Greenwood-Nimmo, Matthew
    Shields, Kalvinder
    AUSTRALIAN ECONOMIC REVIEW, 2017, 50 (03) : 363 - 372
  • [39] Impact of using scatterometer and altimeter data on storm surge forecasting
    Bajo, Marco
    De Biasio, Francesco
    Umgiessera, Georg
    Vignudelli, Stefano
    Zecchetto, Stefano
    OCEAN MODELLING, 2017, 113 : 85 - 94
  • [40] Quantitative identification dust and sand storm using MODIS data
    Ni, G
    Yun, L
    Wang, XP
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 3630 - 3633