A Real-Time Traffic Sign Recognition Method Using a New Attention-Based Deep Convolutional Neural Network for Smart Vehicles

被引:17
|
作者
Triki, Nesrine [1 ]
Karray, Mohamed [2 ]
Ksantini, Mohamed [1 ]
机构
[1] Univ Sfax, Lab ENIS, CEM, Sfax 3038, Tunisia
[2] ESME, ESME Res Lab, F-94200 Ivry, France
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 08期
关键词
artificial intelligence; Advanced Driver Assistance Systems; Automated Driving Systems; traffic sign recognition; attention mechanism; embedded system; SYSTEM;
D O I
10.3390/app13084793
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Artificial Intelligence (AI) in the automotive industry allows car manufacturers to produce intelligent and autonomous vehicles through the integration of AI-powered Advanced Driver Assistance Systems (ADAS) and/or Automated Driving Systems (ADS) such as the Traffic Sign Recognition (TSR) system. Existing TSR solutions focus on some categories of signs they recognise. For this reason, a TSR approach encompassing more road sign categories like Warning, Regulatory, Obligatory, and Priority signs is proposed to build an intelligent and real-time system able to analyse, detect, and classify traffic signs into their correct categories. The proposed approach is based on an overview of different Traffic Sign Detection (TSD) and Traffic Sign Classification (TSC) methods, aiming to choose the best ones in terms of accuracy and processing time. Hence, the proposed methodology combines the Haar cascade technique with a deep CNN model classifier. The developed TSC model is trained on the GTSRB dataset and then tested on various categories of road signs. The achieved testing accuracy rate reaches 98.56%. In order to improve the classification performance, we propose a new attention-based deep convolutional neural network. The achieved results are better than those existing in other traffic sign classification studies since the obtained testing accuracy and F1-measure rates achieve, respectively, 99.91% and 99%. The developed TSR system is evaluated and validated on a Raspberry Pi 4 board. Experimental results confirm the reliable performance of the suggested approach.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Real-time Sign Language Recognition based on Neural Network Architecture
    Mekala, Priyanka
    Gao, Ying
    Fan, Jeffrey
    Davari, Asad
    PROCEEDINGS SSST 2011: 43RD IEEE SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2011, : 195 - 199
  • [42] Real-Time Video Object Recognition Using Convolutional Neural Network
    Ahn, Byungik
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [43] Real-time goat face recognition using convolutional neural network
    Billah, Masum
    Wang, Xihong
    Yu, Jiantao
    Jiang, Yu
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 194
  • [44] Underwater acoustic target recognition using attention-based deep neural network
    Xiao, Xu
    Wang, Wenbo
    Ren, Qunyan
    Gerstoft, Peter
    Ma, Li
    JASA EXPRESS LETTERS, 2021, 1 (10):
  • [45] Attention-based deep neural network for driver behavior recognition
    Xiao, Weichu
    Liu, Hongli
    Ma, Ziji
    Chen, Weihong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 132 : 152 - 161
  • [46] Attention-Based Temporal Weighted Convolutional Neural Network for Action Recognition
    Zang, Jinliang
    Wang, Le
    Liu, Ziyi
    Zhang, Qilin
    Niu, Zhenxing
    Hua, Gang
    Zheng, Nanning
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2018, 2018, 519 : 97 - 108
  • [47] Robust Chinese Traffic Sign Detection and Recognition with Deep Convolutional Neural Network
    Qian, Rongqiang
    Zhang, Bailing
    Yue, Yong
    Wang, Zhao
    Coenen, Frans
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 791 - 796
  • [48] Automated skin lesion segmentation using attention-based deep convolutional neural network
    Arora, Ridhi
    Raman, Balasubramanian
    Nayyar, Kritagya
    Awasthi, Ruchi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 65
  • [49] Real-Time American Sign Language Recognition Using Skin Segmentation and Image Category Classification with Convolutional Neural Network and Deep Learning
    Shahriar, Shadman
    Siddiquee, Ashraf
    Islam, Tanveerul
    Ghosh, Abesh
    Chakraborty, Rajat
    Khan, Asir Intisar
    Shahnaz, Celia
    Fattah, Shaikh Anowarul
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 1168 - 1171
  • [50] AN AUTOMATED SYSTEM FOR TRAFFIC SIGN RECOGNITION USING CONVOLUTIONAL NEURAL NETWORK
    Narejo, Sanam
    Talpur, Shahnawaz
    Memon, Madeha
    Rahoo, Amna
    3C TECNOLOGIA, 2020, : 119 - 135