A Real-Time Traffic Sign Recognition Method Using a New Attention-Based Deep Convolutional Neural Network for Smart Vehicles

被引:17
|
作者
Triki, Nesrine [1 ]
Karray, Mohamed [2 ]
Ksantini, Mohamed [1 ]
机构
[1] Univ Sfax, Lab ENIS, CEM, Sfax 3038, Tunisia
[2] ESME, ESME Res Lab, F-94200 Ivry, France
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 08期
关键词
artificial intelligence; Advanced Driver Assistance Systems; Automated Driving Systems; traffic sign recognition; attention mechanism; embedded system; SYSTEM;
D O I
10.3390/app13084793
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Artificial Intelligence (AI) in the automotive industry allows car manufacturers to produce intelligent and autonomous vehicles through the integration of AI-powered Advanced Driver Assistance Systems (ADAS) and/or Automated Driving Systems (ADS) such as the Traffic Sign Recognition (TSR) system. Existing TSR solutions focus on some categories of signs they recognise. For this reason, a TSR approach encompassing more road sign categories like Warning, Regulatory, Obligatory, and Priority signs is proposed to build an intelligent and real-time system able to analyse, detect, and classify traffic signs into their correct categories. The proposed approach is based on an overview of different Traffic Sign Detection (TSD) and Traffic Sign Classification (TSC) methods, aiming to choose the best ones in terms of accuracy and processing time. Hence, the proposed methodology combines the Haar cascade technique with a deep CNN model classifier. The developed TSC model is trained on the GTSRB dataset and then tested on various categories of road signs. The achieved testing accuracy rate reaches 98.56%. In order to improve the classification performance, we propose a new attention-based deep convolutional neural network. The achieved results are better than those existing in other traffic sign classification studies since the obtained testing accuracy and F1-measure rates achieve, respectively, 99.91% and 99%. The developed TSR system is evaluated and validated on a Raspberry Pi 4 board. Experimental results confirm the reliable performance of the suggested approach.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Traffic Sign Recognition Based on Convolutional Neural Network Model
    He, Zhilong
    Xiao, Zhongjun
    Yan, Zhiguo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 155 - 158
  • [32] Traffic Sign Detection and Recognition Based on Convolutional Neural Network
    Sun, Ying
    Ge, Pingshu
    Liu, Dequan
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2851 - 2854
  • [33] Convolutional Neural Network Based Traffic Sign Recognition System
    Xu, Shuang
    Niu, Deqing
    Tao, Bo
    Li, Gongfa
    2018 5TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2018, : 957 - 961
  • [34] Traffic Sign Recognition Based on SVM And Convolutional Neural Network
    Tong Guofeng
    Chen Huairong
    Li Yong
    Zheng Kai
    PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2017, : 2066 - 2071
  • [35] Attention-Based Convolutional Recurrent Neural Network for Traffic Index Prediction
    Liu, Xiaolei
    Duan, Zhengyu
    Luo, Songwen
    Zhao, Yixin
    CICTP 2023: INNOVATION-EMPOWERED TECHNOLOGY FOR SUSTAINABLE, INTELLIGENT, DECARBONIZED, AND CONNECTED TRANSPORTATION, 2023, : 1140 - 1149
  • [36] Real-time CVSA decals recognition system using deep convolutional neural network architectures
    Yepez, Juan
    Castro-Zunti, Riel
    Choi, Younhee
    Ko, Seok-Bum
    IET INTELLIGENT TRANSPORT SYSTEMS, 2021, 15 (11) : 1359 - 1371
  • [37] MyoTac: Real-Time Recognition of Tactical Sign Language Based on Lightweight Deep Neural Network
    Li, Huiyong
    Zhang, Yifan
    Cao, Qian
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [38] Spatial Attention-Based 3D Graph Convolutional Neural Network for Sign Language Recognition
    Al-Hammadi, Muneer
    Bencherif, Mohamed A.
    Alsulaiman, Mansour
    Muhammad, Ghulam
    Mekhtiche, Mohamed Amine
    Abdul, Wadood
    Alohali, Yousef A.
    Alrayes, Tareq S.
    Mathkour, Hassan
    Faisal, Mohammed
    Algabri, Mohammed
    Altaheri, Hamdi
    Alfakih, Taha
    Ghaleb, Hamid
    SENSORS, 2022, 22 (12)
  • [39] Real-time emotion recognition using end-to-end attention-based fusion network
    Shit, Sahadeb
    Rana, Aiswarya
    Das, Dibyendu Kumar
    Ray, Dip Narayan
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (01)
  • [40] A Real-Time Trajectory Optimization Method for Hypersonic Vehicles Based on a Deep Neural Network
    Wang, Jianying
    Wu, Yuanpei
    Liu, Ming
    Yang, Ming
    Liang, Haizhao
    AEROSPACE, 2022, 9 (04)