Analogues of Entropy in Bi-Free Probability Theory: Microstates

被引:1
|
作者
Charlesworth, Ian [1 ]
Skoufranis, Paul [2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] York Univ, Dept Math & Stat, 4700 Keele St, Toronto, ON M3J 1P3, Canada
关键词
FISHERS INFORMATION MEASURE;
D O I
10.1093/imrn/rnab279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extend the notion of microstate free entropy to the bi-free setting. In particular, using the bi-free analogue of random matrices, microstate bi-free entropy is defined. Properties essential to an entropy theory are developed, such as the behaviour of the entropy when transformations on the left variables or on the right variables are performed. In addition, the microstate bi-free entropy is demonstrated to be additive over bi-free collections provided additional regularity assumptions are included and is computed for all bi-free central limit distributions. Moreover, an orbital version of bi-free entropy is examined, which provides a tighter upper bound for the subadditivity of microstate bi-free entropy and provides an alternate characterization of bi-freeness in certain settings.
引用
收藏
页码:636 / 707
页数:72
相关论文
共 50 条
  • [31] Non-microstates free entropy dimension for groups
    I. Mineyev
    D. Shlyakhtenko
    Geometric & Functional Analysis GAFA, 2005, 15 : 476 - 490
  • [32] A COMBINATORIAL APPROACH TO VOICULESCU'S BI-FREE PARTIAL TRANSFORMS
    Skoufranis, Paul
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 283 (02) : 419 - 447
  • [33] Non-microstates free entropy dimension for groups
    Mineyev, I
    Shlyakhtenko, D
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (02) : 476 - 490
  • [34] A COMBINATORIAL APPROACH TO THE OPPOSITE BI-FREE PARTIAL S-TRANSFORM
    Skoufranis, Paul
    OPERATORS AND MATRICES, 2018, 12 (02): : 333 - 355
  • [35] Free probability for pairs of faces II: 2-variables bi-free partial R-transform and systems with rank ≤ 1 commutation
    Voiculescu, Dan-Virgil
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (01): : 1 - 15
  • [36] Maximality of the microstates free entropy for R-diagonal elements
    Nica, A
    Shlyakhtenko, D
    Speicher, R
    PACIFIC JOURNAL OF MATHEMATICS, 1999, 187 (02) : 333 - 347
  • [37] Probability and entropy in quantum theory
    Caticha, A
    MAXIMUM ENTROPY AND BAYESIAN METHODS, 1999, 105 : 237 - 246
  • [38] An Analogue of the Levy-Hincin Formula for Bi-Free Infinitely Divisible Distributions
    Gu, Yinzheng
    Huang, Hao-Wei
    Mingo, James A.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (05) : 1795 - 1831
  • [39] Fabrication of Bi-free TiO2 nano-crystallized glass
    Masai, Hirokazu
    Toda, Tatsuya
    Takahashi, Yoshihiro
    Fujiwara, Takumi
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2010, 356 (44-49) : 2674 - 2676
  • [40] On classical analogues of free entropy dimension
    Guionnet, A.
    Shlyakhtenko, D.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 251 (02) : 738 - 771