On classical analogues of free entropy dimension

被引:11
|
作者
Guionnet, A.
Shlyakhtenko, D. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Ecole Normale Super Lyon, Unite Math Pures & Appl, UMR 5669, F-69364 Lyon 07, France
[3] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
free probability; free entropy dimension; fractal dimension; measure; Bochner inequality;
D O I
10.1016/j.jfa.2007.06.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a classical probability analogue of Voiculescu's free entropy dimension that we shall call the classical probability entropy dimension of a probability measure on R-n. We show that the classical probability entropy dimension of a measure is related with diverse other notions of dimension. First, it can be viewed as a kind of fractal dimension. Second, if one extends Bochner's inequalities to a measure by requiring that microstates around this measure asymptotically satisfy the classical Bochner's inequalities, then we show that the classical probability entropy dimension controls the rate of increase of optimal constants in Bochner's inequality for a measure regularized by convolution with the Gaussian law as the regularization is removed. We introduce a free analogue of the Bochner inequality and study the related free entropy dimension quantity. We show that it is greater or equal to the non-microstates free entropy dimension. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:738 / 771
页数:34
相关论文
共 50 条
  • [1] A free entropy dimension lemma
    Jung, K
    PACIFIC JOURNAL OF MATHEMATICS, 2003, 211 (02) : 265 - 271
  • [2] Remarks on free entropy dimension
    Shlyakhtenko, Dimitri
    OPERATOR ALGEBRAS, 2006, 1 : 249 - 257
  • [3] Free entropy dimension in amalgamated free products
    Brown, Nathanial P.
    Dykema, Kenneth J.
    Jung, Kenley
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 97 : 339 - 367
  • [4] A hyperfinite inequality for free entropy dimension
    Jung, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (07) : 2099 - 2108
  • [5] LOWER ESTIMATES ON MICROSTATES FREE ENTROPY DIMENSION
    Shlyakhtenko, Dimitri
    ANALYSIS & PDE, 2009, 2 (02): : 119 - 146
  • [6] Dimension-Free Empirical Entropy Estimation
    Cohen, Doron
    Kontorovich, Aryeh
    Koolyk, Aaron
    Wolfer, Geoffrey
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [7] Dimension-Free Empirical Entropy Estimation
    Cohen, Doron
    Kontorovich, Aryeh
    Koolyk, Aaron
    Wolfer, Geoffrey
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (05) : 3190 - 3202
  • [8] CLASSICAL ENTROPY OF QUASI-FREE STATES
    SCUTARU, H
    PHYSICS LETTERS A, 1995, 200 (02) : 91 - 94
  • [9] Non-microstates free entropy dimension for groups
    Mineyev, I
    Shlyakhtenko, D
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (02) : 476 - 490
  • [10] On free entropy dimension of finite von Neumann algebras
    Ge, LM
    Shen, JH
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (03) : 546 - 566