IPCONV: Convolution with Multiple Different Kernels for Point Cloud Semantic Segmentation

被引:3
|
作者
Zhang, Ruixiang [1 ]
Chen, Siyang [1 ]
Wang, Xuying [1 ]
Zhang, Yunsheng [1 ,2 ]
机构
[1] Cent South Univ, Sch Geosci & Info Phys, Changsha 410075, Peoples R China
[2] Natl Engn Res Ctr High Speed Railway Construct Tec, Changsha 410075, Peoples R China
基金
中国国家自然科学基金;
关键词
point cloud semantic segmentation; deep neural network; convolution; multi-shape neighborhood; CLASSIFICATION; NETWORK;
D O I
10.3390/rs15215136
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The segmentation of airborne laser scanning (ALS) point clouds remains a challenge in remote sensing and photogrammetry. Deep learning methods, such as KPCONV, have proven effective on various datasets. However, the rigid convolutional kernel strategy of KPCONV limits its potential use for 3D object segmentation due to its uniform approach. To address this issue, we propose an Integrated Point Convolution (IPCONV) based on KPCONV, which utilizes two different convolution kernel point generation strategies, one cylindrical and one a spherical cone, for more efficient learning of point cloud data features. We propose a customizable Multi-Shape Neighborhood System (MSNS) to balance the relationship between these convolution kernel point generations. Experiments on the ISPRS benchmark dataset, LASDU dataset, and DFC2019 dataset demonstrate the validity of our method.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Point attention network for point cloud semantic segmentation
    Ren, Dayong
    Wu, Zhengyi
    Li, Jiawei
    Yu, Piaopiao
    Guo, Jie
    Wei, Mingqiang
    Guo, Yanwen
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (09)
  • [22] Point attention network for point cloud semantic segmentation
    Dayong Ren
    Zhengyi Wu
    Jiawei Li
    Piaopiao Yu
    Jie Guo
    Mingqiang Wei
    Yanwen Guo
    Science China Information Sciences, 2022, 65
  • [23] PCSCNet: Fast 3D semantic segmentation of LiDAR point cloud for autonomous car using point convolution and sparse convolution network
    Park, Jaehyun
    Kim, Chansoo
    Kim, Soyeong
    Jo, Kichun
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 212
  • [24] Semantic segmentation of 3D point cloud based on boundary point estimation and sparse convolution neural network
    Yang J.
    Zhang C.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (06): : 1121 - 1132
  • [25] On Adversarial Robustness of Point Cloud Semantic Segmentation
    Xu, Jiacen
    Zhou, Zhe
    Feng, Boyuan
    Ding, Yufei
    Li, Zhou
    2023 53RD ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS, DSN, 2023, : 531 - 544
  • [26] Three-Dimensional Point Cloud Semantic Segmentation Network Based on Spatial Graph Convolution Network
    Zhang Kun
    Zhu Yawei
    Wang Xiaohong
    Zhang Liting
    Zhong Ruofei
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (02)
  • [27] RG-GCN: A Random Graph Based on Graph Convolution Network for Point Cloud Semantic Segmentation
    Zeng, Ziyin
    Xu, Yongyang
    Xie, Zhong
    Wan, Jie
    Wu, Weichao
    Dai, Wenxia
    REMOTE SENSING, 2022, 14 (16)
  • [28] Convolution in the Cloud: Learning Deformable Kernels in 3D Graph Convolution Networks for Point Cloud Analysis
    Lin, Zhi-Hao
    Huang, Sheng-Yu
    Wang, Yu-Chiang Frank
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1797 - 1806
  • [29] Projection-Based Point Convolution for Efficient Point Cloud Segmentation
    Ahn, Pyunghwan
    Yang, Juyoung
    Yi, Eojindl
    Lee, Chanho
    Kim, Junmo
    IEEE ACCESS, 2022, 10 : 15348 - 15358
  • [30] Kernel Point Convolution LSTM Networks for Radar Point Cloud Segmentation
    Nobis, Felix
    Fent, Felix
    Betz, Johannes
    Lienkamp, Markus
    APPLIED SCIENCES-BASEL, 2021, 11 (06):