Point attention network for point cloud semantic segmentation

被引:0
|
作者
Dayong Ren
Zhengyi Wu
Jiawei Li
Piaopiao Yu
Jie Guo
Mingqiang Wei
Yanwen Guo
机构
[1] Nanjing University,National Key Lab for Novel Software Technology
[2] Nanjing University of Aeronautics and Astronautics,School of Computer Science and Technology
来源
关键词
point cloud; semantic segmentation; self-attention mechanism; deep learning; long-range dependencies;
D O I
暂无
中图分类号
学科分类号
摘要
We address the point cloud semantic segmentation problem through modeling long-range dependencies based on the self-attention mechanism. Existing semantic segmentation models generally focus on local feature aggregation. By comparison, we propose a point attention network (PA-Net) to selectively extract local features with long-range dependencies. We specially devise two complementary attention modules for the point cloud semantic segmentation task. The attention modules adaptively integrate the semantic inter-dependencies with long-range dependencies. Our point attention module adaptively integrates local features of the last layer of the encoder with a weighted sum of the long-range dependency features. Regardless of the distance of similar features, they are all correlated with each other. Meanwhile, the feature attention module adaptively integrates inter-dependent feature maps among all local features in the last layer of the encoder. Extensive results prove that our two attention modules together improve the performance of semantic segmentation on point clouds. We achieve better semantic segmentation performance on two benchmark point cloud datasets (i.e., S3DIS and ScanNet). Particularly, the IoU on 11 semantic categories of S3DIS is significantly boosted.
引用
收藏
相关论文
共 50 条
  • [1] Point attention network for point cloud semantic segmentation
    Dayong REN
    Zhengyi WU
    Jiawei LI
    Piaopiao YU
    Jie GUO
    Mingqiang WEI
    Yanwen GUO
    Science China(Information Sciences), 2022, 65 (09) : 99 - 112
  • [2] Point attention network for point cloud semantic segmentation
    Ren, Dayong
    Wu, Zhengyi
    Li, Jiawei
    Yu, Piaopiao
    Guo, Jie
    Wei, Mingqiang
    Guo, Yanwen
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (09)
  • [3] PTANet: Triple Attention Network for point cloud semantic segmentation
    Cheng, Haozhe
    Lu, Jian
    Luo, Maoxin
    Liu, Wei
    Zhang, Kaibing
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 102
  • [4] Deep Graph Attention Convolution Network for Point Cloud Semantic Segmentation
    Chai Yujing
    Ma Jie
    Liu Hong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (12)
  • [5] POINT SET ATTENTION NETWORK FOR SEMANTIC SEGMENTATION
    Jiang, Jie
    Liu, Jing
    Fu, Jun
    Zhu, Xinxin
    Lu, Hanqing
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2186 - 2190
  • [6] Local Graph Point Attention Network in Point Cloud Segmentation
    Tran, Anh-Thuan
    Le, Hoanh-Su
    Lee, Suk-Hwan
    Kwon, Ki-Ryong
    IEEE ACCESS, 2023, 11 : 33296 - 33312
  • [7] Graph Attention Convolution for Point Cloud Semantic Segmentation
    Wang, Lei
    Huang, Yuchun
    Hou, Yaolin
    Zhang, Shenman
    Shan, Jie
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10288 - 10297
  • [8] GA-NET: Global Attention Network for Point Cloud Semantic Segmentation
    Deng, Shuang
    Dong, Qiulei
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1300 - 1304
  • [9] A Dual Attention Neural Network for Airborne LiDAR Point Cloud Semantic Segmentation
    Zhang, Ka
    Ye, Longjie
    Xiao, Wen
    Sheng, Yehua
    Zhang, Shan
    Tao, Xia
    Zhou, Yaqin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Point cloud semantic segmentation network based on graph convolution and attention mechanism
    Yang, Nan
    Wang, Yong
    Zhang, Lei
    Jiang, Bin
    Engineering Applications of Artificial Intelligence, 2025, 141